期刊文献+

基于递进多目标蛙跳优化的LSB±K隐写算法 被引量:2

A secure LSB plus-minus K steganography based on escalating multi-objective SFLA
下载PDF
导出
摘要 设计一种采用非支配排序、拥挤机制和种群重构等策略的递进多目标混合蛙跳算法,可有效保证Pareto前沿的多样性和均匀性.将该多目标优化算法用于设计LSB±K隐写算法.在优化过程中对图像分块,对应所有图像子块组成的矩阵构成优化算法的可行解,矩阵元素代表对应图像块像素的嵌入位数.以载体图像与载密图像差分图的直方图特征函数质心差和隐写容量为两个优化目标,对不同图像块的嵌入位数进行优化.实验结果表明,采用递进多目标混合蛙跳优化的LSB±K隐写算法,与相近抗分析性能下的LSBM隐写及单目标优化LSBM隐写相比,嵌入容量提高了30%;与相同容量的LSB±2隐写及单目标优化LSB±2隐写相比,抗分析能力更强. An escalating multi-objective shuffled frog leaping algorithm (EMO-SFLA) was proposed. In the EMO-SFLA strategies such as non-dominated sorting, crowding distance and population reconstruction were adopted to obtain a diversity and uniformity of the Pareto frontier. Then, an improved least-significant bit plus-minus K steganography ( denoted as SFLA-LSBK) was put forward based on EMO-SFLA. In SFLA-LSBK, a matrix denoting all the image blocks was defined as a feasible solution, and the value was shown of each element of the matrix, denoting the embedding bits of the corresponding image block. The difference of the histogram characteristic function center of mass (HCF-COM) of the cover difference images and its stego version, together with the embedding capacity, were employed as the two objects for optimizing the embedded bits of each image block. Experimental results show that, under similar security levels, SFLA-LSBK has a 30% increase in embedding capacity over LSB Matching steganography, and the LSB Matching steganography was improved with single objective optimization. The proposed method also demonstrates better performance in resisting steganalysis than LSB ± 2 steganography, and the LSB ± 2 steganography is improved with single objective optimization under the same embedding capacity.
出处 《深圳大学学报(理工版)》 EI CAS 北大核心 2012年第3期224-229,共6页 Journal of Shenzhen University(Science and Engineering)
基金 国家自然科学基金资助项目(61171124 61103174)~~
关键词 数据安全与计算机安全 隐写 混合蛙跳算法 多目标优化 data security and computer security steganography shuffled frog leaping algorithm multi-objective optimization
  • 相关文献

参考文献12

  • 1Sharp T. An implementation of key-based digital signal steganography [C]//Proceedings of the 4th International Workshop on Information Hiding. Pittsburgh ( USA ) : IEEE Press, 2001, 2137: 13-26.
  • 2Eusuff M M, Lansey K E. Optimization of water distribu- tion network design using the shuffled frog leaping algorithm [ J ]. Journal of Water Sources Planning and Management, 2003, 129(3): 210-225.
  • 3Hateme, Emad E, Tarek H, et al. Comparison of two evolutionary algorithms for optimization of bridge deck repairs [ Jl. Computer-Aided Civil and Infrastructure Engineering, 2006, 21: 561-572.
  • 4Deb K, Pratab A, Agrawal S, et al. A fast and elitist nondominated sorting genetic algorithm for multi-objective optimization: NSGA-II [ Jl. IEEE Transcations on Evolutionary Computation, 2002, 6 (2): 182-197.
  • 5师瑞峰,周泓,谭小卫.递进多目标遗传算法[J].系统工程理论与实践,2005,25(12):48-56. 被引量:6
  • 6赵亮,雎刚,吕剑虹.一种改进的遗传多目标优化算法及其应用[J].中国电机工程学报,2008,28(2):96-102. 被引量:45
  • 7Ker A D. Steganalysis of lsb matching in grayscale images [ J]. IEEE Signal Processing Letters, 2005, 12(6) : 441- 444.
  • 8Li X, Zeng T. Detecting lsb matching by applying calibration technique for difference image [ C ]// Proceedings of lOth ACM Workshop on Multimedia and Security. Oxford (UK) : ACM Press, 2008 : 133-138.
  • 9Mitrinovic D S, Pecaric J E, Fink A M. Classical and New Inequalities in Analysis [ M ]. Dordrecht ( Netherlands) : Kluwer Academic Publishers, 1993.
  • 10United States Department of Agriculture. Natural resources conservation service photo gallery [ DB/OL] http ://photogallery, nrcs. usda. gov, 2002.

二级参考文献34

  • 1杨莉,高晓光,符小卫.优化设计中的多目标进化算法[J].计算机工程与应用,2005,41(6):33-36. 被引量:7
  • 2张兴华,朱筱蓉,林锦国.基于自适应遗传算法的多目标PID优化设计[J].系统工程与电子技术,2006,28(5):744-746. 被引量:8
  • 3玄光男 程润伟.遗传算法与工程优化[M].北京:清华大学出版社,2004..
  • 4Lu H M. State-of-the-art muhiobjective evolutionary algorithms - Pareto ranking, density estimation and dynamic population[ D].Unpublished Ph. D Thesis, 2002.
  • 5Chankong V, Haimes Y Y. Muhiobjective Decision Making: Theory and Methodology[ M]. Elsevier Science Publishing Co.,1983.
  • 6Schaffer J D. Multiple objective optimization with vector evaluated genetic algorithms [ A]. Proceedings of the 1st International Congress on Genetic Algorithms [C], Hillsdale, Lawrence Erlbaum, New York, 1985 : 93 - 100.
  • 7Goldberg D E. Genetic Algorithms: in Search, Optimization and Machine Learning[ M]. Addison-Wesley. 1989.
  • 8Horn J, Nafpliotis N, Goldberg D E. A niched pareto genetic algorithm for multiobjective optimization[ A]. Proceedings of the 1st IEEE Congress on Evolutionary Computation[ C], IEEE World Congress on Computational Computation, 1994, 1: 82- 87.
  • 9Srinivas N, Deb K. Multiobjective optimization using nondominated sorting in genetic algorithms[J]. Evolutionary Computation,1995, 2(3) : 221 - 248.
  • 10Fonseca C M, Fleming P J. Genetic algorithms for multiobjective optimization : formulation, discussion and generalization [ A ].Proceedings of the 5th International Congress on Genetic Algorithms[ C ], Morgan Kaufmann, California, 1993: 416- 423.

共引文献49

同被引文献19

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部