期刊文献+

非等同广义离散超混沌系统的多同步研究 被引量:2

Multiple synchronization of two non-identical generalized hyperchaotic systems
下载PDF
导出
摘要 提出用广义依农映像和广义立方映像两个离散超混沌系统,在单向驱动控制信号的作用下,构建了非等同超混沌同步的驱动-响应系统,根据离散系统局域稳定性理论,确定这一系统在不同维数下出现完全同步和完全反同步、广义同步和广义反同步的解析条件,设计和构建非等同超混沌系统的实验电路,依据理论分析得到的参数范围,通过数值计算和测量实验电路,所得到的结果均与理论分析的结果相符合.研究结果表明,恰当选择单路驱动控制信号,也可实现非等同超混沌离散系统多种类型的同步. Multiple synchronization phenomena between the generalized Henon maps and the generalized cubic map non-identical discrete-time hyperchaotic systems were observed. These two systems were unidirectionally coupled with the drive-response synchronization scheme by a single driving signal. By using the local stability theory of discrete systems, the analytical conditions of the complete synchronization, anti-synchronization and generalized synchronization for the systems in different dimensions were derived respectively. The experimental circuits for both the generalized H6non maps and the generalized cubic map and several observed numerical simulations are also designed. Results indicate consistency with the theoretical analysis for the synchronization.
出处 《深圳大学学报(理工版)》 EI CAS 北大核心 2012年第3期242-246,共5页 Journal of Shenzhen University(Science and Engineering)
基金 国家自然科学基金资助项目(70571053)~~
关键词 高维混沌 广义离散超混沌系统 单路驱动信号 非等同系统 多同步态 电路实验 higher-dimensional chaos generalized discrete-time hyperchaotic system single driving signal non- identical system multiple synchronization circuit experiment
  • 相关文献

参考文献15

  • 1Pecora L M, Carroll T L. Synchronization in chaotic systems [J]. Physical Review Letters, 1990, 64(8) : 821- 82.
  • 2Ravoori B, Cohen A B, Setty A V, et al. Adaptive synchronization of coupled chaotic oscillators [ J ]. Phy-sical Review E, 2009, 80(5) : 056205.
  • 3ZHANG Yin-pin, SUN Ji-tao. Chaotic synchronization and anti-synchronization based on suitable separation [Jl. Physics Letter A, 2004, 330(6) : 442-447.
  • 4Kocarev L, Parlitz U. Generalized synchronization, p-redictability, and equivalence of uniderctionally coupl-ed dynamical systems [ J ]. Physical Review Letters, 1996,.76(11): 1816-1819.
  • 5Alvarez-Llamoza O, Cosenza M G. Generalized synchronization of chaos in autonomous systems [ J]. Physical Review E, 2008, 78(4) : 046216.
  • 6Boccaletti S, Kurths J, Osipov G, et al. The synchronization of chaotic systems [ J]. Physics Reports, 2002, 366(1/2) : 1-101.
  • 7Aviad Y, Reidler I, Kinzel W, et al. Phase synchronization in mutually coupled chaotic diode lasers [ J ]. Physical Review E, 2008, 78(2) : 025204.
  • 8Rosenblum M G, Pikovsky A S, Kurths J. From phase to lag synchronization in coupled chaotic oscillators [ J ]. Physical Review Letters, 1997, 78(22) : 41934196.
  • 9Sivaprakasam S, Shahverdiev E M, Spencer P S, et al. Experimental demonstration of anticipating synchronization in chaotic semiconductor lasers with optical feedback [ J ]. Physical Review Letters, 2001, 87 (15) : 154101.
  • 10Pyragas K, Pyragiene T. Coupling design for a longterm anticipating synchronization of chaos [ J 1. Physical Review E, 2008, 78(4) : 046217 .

二级参考文献12

  • 1BaptismMS.利用混沌加密.物理快报A,1998,240:50-54.
  • 2DangPP ChauPM.图像加密方法在因特网多媒体保密上的应用.IEEE消费电子汇刊,2000,46(3):395-403.
  • 3李树钧 牟轩沁.提高安全性的混沌加密方法.物理快报A,2001,290(3):133-137.
  • 4KoearevL JakimovskiG.混沌与混沌加密:从混沌映像到加密算法.IEEE电路与系统汇刊,2001,48(2):163-169.
  • 5DaehseltF SchwarzW.混沌加密算法.IEEE电路与系统汇刊,2001,48(12):1498-1509.
  • 6WongKW HoSW YungCK.一个以长生简短的密码混沌加密方案.物理快报A,2003,310(1):67-73.
  • 7KelberK SchwarzW.混沌加密系统设计原则.国际分岔与混沌杂志,2007,17(10):3703-3707.
  • 8ZhouQ WongK LiaoXF 等.基于离散混沌映像的并行图像加密算法.混沌、孤子与分形,2008,38(4):1081-1092.
  • 9SunFY LiuST LiZQ 等.一种基于空间混沌映像的图像加密新算法.混沌、孤子与分形,2008,38(3):631-640.
  • 10WongKW KwokBSH LawWS.基于混沌标准映像的快速加密算法.物理快报A,2008,372(15):2645-2652.

共引文献1

同被引文献18

  • 1王营冠,王智.无线传感器网络[M].北京:电子工业出版社,2012.
  • 2Dargie W, Poellabauer C. Fundamentals of Wireless Sen- sor Networks: Theory and Practice [ M ]. Hoboken (USA) : John Wiley & Sons, Ltd, 2010.
  • 3Luo Z X. Overview of applications of wireless sensor net- works [ J]. International Journal of Innovative Technology and Exploring Engineering, 2012, 1 (4) : 4-6.
  • 4Mirollo R E, Strogatz S H. Synchronization of pulse-cou- pled biological oscillators [ J ]. SIAM Journal on Applied Mathematics, 1990, 50(6): 1645-1662.
  • 5Hong Y W, Scaglione A. A scalable synchronization pro- tocol for large scale sensor networks and its applications [ J]. IEEE Journal on Selected Areas In Communications, 2006, 23(5) : 1085-1099.
  • 6Simeone O, Spagnolini U, Bar-Ness Y, et at. Distribu- ted synchronization in wireless networks [ J ]. 1EEE Sig- nal Processing Magazine, 2008, 25 (5) : 81-97.
  • 7Hu A S, Servetto S D. On the scalability of cooperative time synchronization in pulse-connected networks [ J . IEEE Transactions on Information Theory, 2006, 52(6) : 2725 -2748.
  • 8Pagliari R, Scaglione A. Scalable network synchroniza-tion with pulse-coupled oscillators J ]. IEEE Transac- tions on Mobile Computing, 2011, 10(3): 392-405.
  • 9Wang Yongqiang, Doyle F JIII. Optimal phase response functions for fast pulse-coupled synchronization in wireless sensor networks [ J ]. IEEE Transactions on Signal Pro- cessing, 2012, 60(10): 5583-5588.
  • 10Frasca M, Buscarino A, Rizzo A, et al. Synchronization of moving chaotic agents [ J]. Physical Review Letters, 2008, 100 (4): 044102.

引证文献2

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部