摘要
设M是有末端奇点的n维正规代数簇,L是M上的丰富线丛,(M,L)的数字有效值为τ=uv(u,v是互素的正整数),σ:M→W是由(M,L)决定的Nef-值态射.通过研究τ的取值情况对(M,L)进行分类,给出了当u=n-1时,(M,L)的较完整的分类,推广了一些文献的结果.
Let M be a normal variety of dimension n with terminal singular it ies, L an ample =u/v( line bundle on M, the effective value of (M, L) be 7 u, v are coprime integers) ,σ: M→W be the Nef - value morphism of (M, L ). The classification of (M, L) can be done by studying the value of 7, when u = n - 1, the classification of (M, L ) , the results of other papers were extended
出处
《哈尔滨商业大学学报(自然科学版)》
CAS
2012年第2期216-218,共3页
Journal of Harbin University of Commerce:Natural Sciences Edition
关键词
代数簇
Nef-值态射
丰富线丛
projective variery
Nef- value morphism
ample line bundle