期刊文献+

大鼠外侧膝状体神经元时空频率调谐特性发育观察 被引量:3

Development of spatiotemporai frequency turning in rat lateral geniculate neuron
下载PDF
导出
摘要 背景外侧膝状体(LGN)是视觉通路中重要的视觉信息处理器官,近年来发现LGN参与运动视觉信息处理,功能磁共振成像检查表明在LGN水平存在着双眼竞争,可能与弱视的发生有关。然而,LGN神经元时空频率特性的研究多限于猴或者猫,大鼠的相关研究较少。目的观察不同年龄段大鼠LGN神经元感受野时空频率调谐特性。方法取睁眼后14—16d组、20~22d组、27~30d组及睁眼后60d组Wistar大鼠各5只,用在体细胞外记录技术,通过正弦光栅视觉刺激分别对各组大鼠LGN神经元感受野时空调谐特性进行检测,观察大鼠LGN神经元时空频率调谐特性随着发育发生的动态变化。结果睁眼后14—16d组、20~22d组、27~30d组及睁眼后60d组大鼠LGN神经元时间和空间频率调谐低通调制和带通调制间神经元数量的差异均无统计学意义(,=0.68、0.47,P〉0.05),4个组大鼠LGN神经元感受野最优时间频率调谐特性成年后达最高值,大鼠LGN神经元的最优时间频率均值分别为(2.5±1.3)、(2.6±1.2)、(2.6±1.1)、(3.6+1.1)Hz,差异有统计学意义(,=4.53,P〈0.05),睁眼后60d组的最优时间频率明显高于睁眼后14—16d组、20~22d组、27~30d组,差异均有统计学意义(q=4.43、4.10、4.03,P〈0.05),睁眼后14~16d组、20~22d组、27~30d组间的相互比较差异均无统计学意义(P〉0.05)。4个组大鼠LGN神经元的最优空间频率均值分别为(0.04±0.04)、(0.04±0.03)、(0.05±0.03)、(0.05±0.04)cpd,差异均无统计学意义(F=0.58,P〉0.05),而时间频率瞬时带宽及空间频率带宽各年龄组问比较,差异均无统计学意义(F=0.37、1.22,P〉0.05)。结论大鼠LGN神经元感受野时空频率调谐发育特性的不同可能与其在视觉通路中的功能有关。 Background Recent researches suggested that properties of neurons in the lateral geniculate neuron (LGN) may represent an important neural limitation on the development of basic spatial and temporal vision, and even binocular rivalry. However, previous studies on the properties of spatiotemporal frequency tuning of LGN were rather concentrated on a monkey or cat,whereas little is known about rat. Objective This study was to examine the development of spatiotemporal frequency tuning in rats LGN. Methods Twenty Wistar rats were collected and divided into 14-16 day, 20-22 day, 27-30 day and 60 day groups according to the different ages after their eyes opened and 5 rats were assigned for each group. Extracellular single neuron recording was carried out in the rats to study the spatio-temporal receptive field properties of neurons in LGN by sinusoidal gratings visual stimuli. Dynamic changes of the spatio-temporal receptive field properties of neurons in LGN with the development of Wistar rats were evaluated. Results The differences between band-pass and low-pass distribution of temporal frequency or spatial frequency of rat LGN were not statistically significant (X2 = O. 68,0.47 ,P〉0. 05 ). The optimal temporal frequency of receptive field in rat LGN went up to the maximum value until 60 day in Wistar rats. The mean optimal temporal frequencies of neurons in the four different age groups were (2.5 ± 1.3 ) , (2.6± 1.2) , (2.6± 1. l ) and ( 3.6± 1.1 ) Hz with significant differences among the 4 groups (F= 4.53,P〈0. 05 ) , and those in the 14-16 day group,20-22 day group,27-30 day group were significantly lower than in the 60 days group (q = 4.43,4. 10,4. 03, P〈 0.05 ). No significant differences were seen among the 14-16 day group ,20-22 day group and 27-30 day group (P〉0. 05 ). The optimal spatial frequency values in the four groups were ( 0. 04 ± 0. 04 ) , ( 0.04 ± 0. 03 ) , ( 0. 05 ± 0.03 ) , ( 0.05 ± 0. 04) epd,respectively without statistical difference among them ( F = 0. 58, P 〉 0. 05 ). The temporal and spatial bandwidth values in the various age groups were not statistically significant among the four groups ( F = 0.37,1.22, P〉0. 05). Conclusions The development of temporal and spatial frequency characteristics of the rat LGN receptive field may be related to its functional visual pathway.
出处 《中华实验眼科杂志》 CAS CSCD 北大核心 2012年第5期388-391,共4页 Chinese Journal Of Experimental Ophthalmology
基金 国家自然科学基金项目(30730099)
关键词 外侧膝状体 时空频率调谐 时间频率 空间频率 感受野 Lateral geniculate neuron Spatiotemporal frequency tuning Temporal frequency Spatial frequency Receptive field
  • 相关文献

参考文献18

  • 1高建华,张东杲,宫枢政.单眼视觉剥夺幼猫外侧膝状体中一氧化氮合酶变化的组织化学研究[J].中华眼科杂志,2002,38(8):476-479. 被引量:3
  • 2Lau C, Zhang JW, Xing KK, et al. BOLD responses in the superior colliculus and lateral geniculate nucleus of the rat viewing an apparent motion stimulus[ J]. Neuroimage,2011,58:875-884.
  • 3Hess RF, Thompson B, Gole G, et al. Deficient responses from the lateral geniculate nucleus in humans with amblyopia[ J ]. Eur J Neurosei, 2009,29 : 1064-1070.
  • 4Li X, Mullen KT,Thompson B, et al. Effective connectivity anomalies in human amblyopia[ J]. Neuroimage,2011",54 : 505-516.
  • 5Alitto HJ, Moore BD 4th, Rathbun DL, et al. A comparison of visual responses in the lateral geniculate nucleus of alert and anaesthetized macaque monkeys[ J]. J Physio1,2011,589 : 87 -99.
  • 6诸葛启钏,主译.大鼠脑立体定位图谱[M].北京:人民卫生出版社,2005.图43-48
  • 7Levitt JB,Schumer RA, Sherman SM, et al. Visual response properties of neurons in the LGN of normally reared and visually deprived macaque monkeys[ J]. J Neurophysio1,2001,85 : 2111-2129.
  • 8Tan Z,Yao H. The spatiotemporal frequency tuning of LGN receptive field facilitates neural discrimination of natural stimuli[ J]. J Neurosci, 2009,29 : 11409-11416.
  • 9Prevost F, Lepore F, Guillemot JP. Cortical development of the visual system of the rat[J]. Neuroreport,2010,21:50-54.
  • 10Schummers J, Sharma J, Sur M. Bottom-up and top-down dynamics in visual cortex [ J ]. Prog Brain Res,2005,149 : 65 - 81.

二级参考文献2

共引文献31

同被引文献29

  • 1Horton JC, Hocking DR. Timing of the critical period for plasticity of ocular dominance columns in macaque striate cortex [ J ]. J Neurosci, 1997,17 (10) : 3684-3709.
  • 2Feller MB, Scanziani M. A precritical period for plasticity in visual cortex[ J ]. Curr Opin Neurobiol, 2005,15 ( 1 ) : 94 - 100. DOI: 10. 1016/j. conb. 2005.01. 012.
  • 3Wiesel TN,Hubel DH. Single-cell responses in striate cortex of kittens deprived of vision in one eye[J]. J Neurophysiol,1963,26 : 1003-1017.
  • 4Harwerth RS, Smith EL 3rd, Duncan GC, et al. Multiple sensitive periods in the development of the primate visual system [ J ]. Science, 1986,232 ( 4747 ) : 235 -238.
  • 5Lewis TL, Maurer D. Multiple sensitive periods in human visual development: evidence from visually deprived children [ J ]. Dev Psychobiol,2005,46(3 ) : 163-183. DOI: 10. 1016/j. cub. 2013.01. 0591002/dev. 20055.
  • 6Longordo F, To MS, Ikeda K, et al. Sublinear integration underlies binocular processing in primary visual cortex[ Jl. Nat Neurosci,2013, 16(6) :714-723. DOI:10. 1038/nn. 3394.
  • 7Lien AD,Scanziani M. Tuned thalamic excitation is amplified by visual cortical circuits[ J]. Nat Neurosci,2013,16(9) : 1315-1323. DOI:10. 1038/nn. 3488.
  • 8Liu Y, Shi X, Li Y, et al. The influences of dark rearing on the transmission characteristics of layer ]l/m pyramidal cells during the critical period[ J]. Brain Res,2012,1457:26-32. DOI: 10. 1016/j. brainres. 2012.03. 062.
  • 9Gordon JA, Stryker MP. Experience-dependent plasticity of binocular responses in the primary visual cortex of the mouse [ J ]. J Neurosci, 1996,16(10) : 3274-3286.
  • 10美国眼科学会.眼科临床指南[M].赵家良,译.2版.北京:人民卫生出版社,2013:589-627.

引证文献3

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部