期刊文献+

基于PSO神经网络的察/打无人机武器发射过程参数预测 被引量:1

R/S UAV Missile Launch Parameter Extraction by PSO Neutral Network Algorithm
下载PDF
导出
摘要 为预测察/打无人机导弹发射过程机身温度,提出一种基于PSO神经网络的预测算法。为了寻求RBF神经网络的最优结构,建立了开关型RBF神经网络,并采用PSO算法寻求开关型神经网络的开关值和网络参数。实验结果表明,该算法生成的虚拟函数能够较好的反映参数的内在联系,提高了数值仿真效率。预测结果对察/打无人机武器发射安全性论证有重要价值。 A method of PSO neutral network was proposed,by which the temperature of R/S UAV during missile launch process(MLP) could be forecasted.In order to find optimal structure of RBF neutral network,a switch RBF neural network was established,and the PSO algorithm was used to get the switch value and parameters of the switch RBF neural network.Training results showed that the dummy function from PSO algorithm would indicate the relationship between parameters of R/S UAV surface temperature well.The efficiency could be improved through MLP by PSO method.
出处 《弹箭与制导学报》 CSCD 北大核心 2012年第2期177-180,共4页 Journal of Projectiles,Rockets,Missiles and Guidance
基金 国家自然科学基金(61101191) 航空基金(20100153001) 陕西省自然科学基金会(2011JQ8016)资助项目
关键词 察/打无人机 武器发射 RBF神经网络 PSO算法 参数预测 R/S UAV weapon launch RBF neutral network PSO algorithm temperature predication
  • 相关文献

参考文献7

  • 1Robert M Weyer.Predator weaponization:An application of simulation based acquisition,AIAA2002-5058[R].2002.
  • 2Zhu Bing,Zhu Xiao-Ping.Numerical simulation of weapon separation for R/S UAV[C]//2010The3rd International Conference on Computational Intelligence and Industrial Application,2010.
  • 3Murray B Anderson.Launch conditions and aerodynamic data extraction by an elitist praetor genetic algorithm,AIAA:96-3361[R].1996.
  • 4张树勇,陈绍炜,龚诚.遗传算法在空-地武器阻力特性辨识中的应用[J].飞机设计,2006,26(1):43-46. 被引量:1
  • 5王汉平,路太杰,余文辉.基于遗传算法进化神经网络的潜射导弹筒盖压力预测[J].北京理工大学学报,2006,26(1):23-26. 被引量:4
  • 6Simon Haykin.Neural networks:A comprehensive founda-tion[M].Prentice Hall,1999.
  • 7Kennedy J,Eberhart R C.A discrete binary version of the particle swarm algorithm[C]//Proceedings of the World Multiconference on Systemics,Cybernetics and Informatics,1997:4104-4109.

二级参考文献6

  • 1[1]Anderson M B,Mccurdy R E.Weapon coefficient determination using genetic algorithm[J],AIAA Report,1994(1):8-120.
  • 2龚诚,彭建训.一种用于轰炸弹道快速精确解算的坐标变换[J].西北工业大学学报,1996,(14):136-139.
  • 3[3]陈绍炜.激光制导炸弹技术研究及仿真分析[D].西北工业大学电子工程系,1998.
  • 4[4]Chapman G T,Kirk D B.A method for extracting aerodynamic coefficients from free-flight data[J].AIAA Journal,1970,8(4):25-90.
  • 5郑志军,郑守淇.用基于实数编码的自适应遗传算法进化神经网络[J].计算机工程与应用,2000,36(9):36-37. 被引量:38
  • 6袁慧梅.具有自适应交换率和变异率的遗传算法[J].首都师范大学学报(自然科学版),2000,21(3):14-20. 被引量:40

共引文献3

同被引文献12

  • 1李洁,高新波,焦李成.基于特征加权的模糊聚类新算法[J].电子学报,2006,34(1):89-92. 被引量:114
  • 2叶涛,朱学峰,李向阳,史步海.基于改进k-最近邻回归算法的软测量建模[J].自动化学报,2007,33(9):996-999. 被引量:15
  • 3Robert M Weyer.Predator weaponization:An application of simulation based acquisition,AIAA 2002-5058[R].2002.
  • 4Zhu Bing,Zhu Xiao-Ping.Numerical simulation of weapon separation for R/S UAV[C]//2010 The 3rd International Conference on Computational Intelligence and Industrial Application,2010.
  • 5Wang Xizhao,Wang Yadong,Wang Lijuan.Improving fuzzy c-means clustering based on feature-weight learning[J].Pattern Recognition Letters,2004,25 (10):1123-1132.
  • 6Zhan Yan,Chen Hao,Hang Guochun.An optimization algorithm of K-NN classifier[C]//Proceedings of the Fifth International Conference on Machine Learning and Cybernetics,2006:2246-2251.
  • 7N F Ayan.Using information gain as feature weight[C]//8th Turkish Symposium on Artificial Intelligence and Neural Networks,1999:48-57.
  • 8E R Laura,S Kilian.Theoretical comparison between the Gini index and information gain criteria[J].Analysis of Mathematics and Artificial Intelligence,2004,41 (1):77-93.
  • 9Wen-Liang Hung,Miin-Shen Yang,De-Hua Chen.Bootstrapping approach to feature-weight selection in fuzzy cmeans algorithms with an application in color image segmentation[J].Pattern Recognition Letters,2008,29 (9):1317-1325.
  • 10汪廷华,田盛丰,黄厚宽.特征加权支持向量机[J].电子与信息学报,2009,31(3):514-518. 被引量:56

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部