期刊文献+

基于依存关系的旅游景点评论的特征-观点对抽取 被引量:17

Feature-Opinion Extraction in Scenic Spots Reviews Based on Dependency Relation
下载PDF
导出
摘要 特征—观点对的抽取是观点挖掘中非常重要的研究课题之一。该文首先利用依存语法对句子进行了依存分析,在此基础上研究了旅游评论文本中特征-观点对的抽取。利用词对间的依存关系,构建了获取含有特征和观点词语的组块规则,并设计了候选特征的识别算法和特征—观点对的抽取算法。该文对山西旅游景点评论语料进行了实验,结果表明,特征—观点对的抽取整体的F1值达到了87.10%,验证了方法的有效性。 Feature-Opinion Extraction is one of the key researches in the area of opinion mining,bearing significant affect on the performance of opinion orientation identification.This paper proposes an approach to mining evaluation features and opinions based on the dependency information and the chunk information.With the dependency relation between word and word,we construct the rules to obtain chunks containing the evaluation feature and opinion and further design three algorithms to get the candidate evaluation features and candidate feature-opinion pairs.Experimental results show that the whole F1-measure can achieve 87.10% in scenic spots reviews of Shanxi,proving effectiveness of the proposed method.
出处 《中文信息学报》 CSCD 北大核心 2012年第3期116-121,共6页 Journal of Chinese Information Processing
基金 国家自然科学基金资助项目(60875040,60970014,61175067) 教育部高等学校博士点基金资助项目(200801080006) 山西省自然科学基金资助项目(2010011021-1) 山西省科技攻关项目(20110321027-02) 太原市科技局明星专项(09121001)
关键词 特征-观点对 依存关系 组块 feature-opinion dependency relation chunk
  • 相关文献

参考文献13

  • 1许洪波,孙乐,姚天昉.第三届中文倾向性分析评测总结报告[R].第三届中文倾向性分析评测(COAE2011).2011,1-24.
  • 2Ana-Maria Popescu,Oren Etzioni.Extracting productfFeatures and opinions from reviews[C] //Proceedingsof the Conference on Human Language Technology andEmpirical Methods in Natural Language Processing.2005:32-33.
  • 3刘鸿宇,赵妍妍,秦兵,刘挺.评价对象抽取及其倾向性分析[J].中文信息学报,2010,24(1):84-88. 被引量:99
  • 4Li Zhuang,Feng Jing,Xiaoyan Zhu.Movie reviewmining and summarization[C] //Proceedings of the15th ACM International Conference on Information andKnowledge Management.2006:43-50.
  • 5Nozomi Kobayashi,Kentaro Inui,Yuji Matsumoto.Collecting evaluative expressions for opinion extraction[C] //Proceedings of the 1st International JointConference on Natural Language Processing.2004:584-589.
  • 6Janyce Wiebe,Theresa Wilson,Rebecca Bruce,et al.Learning subjective language[J].ComputationalLinguistics.2004,30(03):277-308.
  • 7G.Somprasertsri,P.Lalitrojwong.Mining Feature-Opinion in online customer reviews for opinionsummarization[J].Journal of Universal ComputerScience.2010,16(6):938-955.
  • 8V.Hatzivassiloglou,KR.McKeown.Predicting thesemantic orientation of adjectives[C] //Proceedings ofthe 35th Annual Meeting of the Association forComputational Linguistics.1997:174-181.
  • 9李素建,刘群.汉语组块的定义和获取[C]//孙茂松,陈群秀.语言计算与基于内容的文本处理:全国计算语言学联合学术会议(SWCL2003)论文集.北京:清华大学出版社,2003:110-115.
  • 10语言技术平台LTP.哈尔滨工业大学社会计算与信息检索研究中心[DB/OL].http://ir.hit.edu.cn/.

二级参考文献27

  • 1王素格,杨军玲,张武.自动获取汉语词语搭配[J].中文信息学报,2006,20(6):31-37. 被引量:14
  • 2姚天昉,聂青阳,李建超,李林琳,陈柯,付宁.一个用于汉语汽车评论的意见挖掘系统[C]//中文信息处理前沿进展-中国中文信息学会二十五周年学术会议论文集.北京:清华大学出版社,2006:260-281.
  • 3Wiebe J,Wilson T,Bruce R,et al.Learning subjective language[J]. Computational Linguistics, 2004,30(3 ) : 277-308.
  • 4Yu Hong,Hatzivassiloglou V.Towards answering opinion questions[C]// Proceeding of EMNLP, 2003.
  • 5Yi J,Nasukawa T,Bunescu R,et al.Sentiment analyzer:Extracting sentiments about a given topic using natural language processing techniques[C]//Proceeding of the Third IEEE International Conference on Data Mining,2003.
  • 6Hu Ming--qing,Liu BingaMining and summarizing customer reviews[C]// Proceedings of the Tenth ACM SIGKDD,2004:168-177.
  • 7Wang Chao,Lu Jie,Zhang Guang-quan.A semantic classification approach for online product reviews[C]//Proceedings of the 2005 IEEE/WIC/ACM International Conference on Web Intelligence(W/' 5) ,2005.
  • 8HowNet[R/OL].HowNet's Home Page.http://www.keenage.com.
  • 9Hong Yu, Vasileios Hatzivassiloglou. Towards answering opinion questions: separating facts from opinions and identifying the polarity of opinion sentences [C]//Proceedings of EMNLP 2003,2003: 129-136.
  • 10Ellen Riloff, Janyce Wiebe, William Phillips. Exploiting subjectivity classification to improve information extraction [ C ]//Proceedings of AAAI-2005, 2005: 1106-1111.

共引文献141

同被引文献170

引证文献17

二级引证文献150

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部