期刊文献+

多孔介质微观模型重构方法研究 被引量:6

Research on the reconstruction method of the micro-model of porous medium
下载PDF
导出
摘要 建立多孔介质微观模型是进行微观渗流研究的基础。列举几种常见的多孔介质微观模型,概述其应用和重要性。调研多孔介质重构方法:物理实验方法、数值重构方法和用于理论研究的随机方法,分析每种方法的基本思想,并在此基础上总结了每种方法的优缺点及其适用性。对比发现,数值重构方法成本低、需要信息量少,可以广泛应用。而在诸多数值重构方法中,马尔科夫链-蒙特卡洛方法(MCMC方法)具有计算速度快、重构效果好和适用范围广泛的特点。通过多孔介质重构实例验证了MCMC方法的优点。最后展望了重构方法的发展和应用。 Building micro model of porous medium is the basis of studying micro permeation.In this paper,several common porous medium micro models were listed and their application and importance were summarized.Then the reconstruction methods of po rous medium micro models,including physical test,numerical reconstruction method and theoretical stochastic method,were stud ied.The basic thoughts of these methods were analyzed,and further more,each method’s characteristics and applicability were summarized.Through the comparison,the numerical reconstruction protruded with the advantage of low cost and requirement for less information,and could be applied widely.Among the numerical reconstruction methods,Markov chain-Monte Carlo(MCMC),characterized with high-speed calculation and good reconstruction effects,was better for wider application.The above advantages of MCMC was proved in porous medium reconstruction cases.At last,the paper foresaw the paper of the development and applica tion of MCMC method.
作者 王波 宁正福
出处 《油气藏评价与开发》 2012年第2期45-49,53,共6页 Petroleum Reservoir Evaluation and Development
基金 教育部科学研究重大项目(311008)
关键词 多孔介质 数值重构 各向异性 马尔科夫链-蒙特卡洛 porous medium numerical reconstruction anisotropic Markov chain-Monte Carlo
  • 相关文献

参考文献25

  • 1Dullien F A L;范玉平;赵东伟.现代渗流物理学[M]北京:石油工业出版社,2001109-131.
  • 2Po-zen Wong,Joel Koplik,J P Tomanic. Conductivity and Permeabilitv of Rocks[J].Physical Review B,1984,(11):6606-6614.
  • 3郭尚平.渗流力学几个方面的进展和建议[A]北京:气象出版社,200111-22.
  • 4张晓军,刘祖源,万明芳.Lattice Boltzmann方法及其应用[J].武汉理工大学学报,2002,24(3):46-49. 被引量:6
  • 5Fatt Ⅰ. The Network Model of Porous Media,I.Capillary Pressure Characteristics[J].Trans AIMM,1956.144-159.
  • 6Fatt Ⅰ. The Network Model of Porous Media,Ⅱ.Dynamic Properties of a Single Size Tube Network[J].Trans AIMM,1956.160-163.
  • 7陶军,姚军,李爱芬,赵秀才.利用孔隙级网络模型研究油水两相流[J].油气地质与采收率,2007,14(2):74-77. 被引量:15
  • 8C E Krohn. Sandstone Fractal and Euclidean Pore Volume Distributions[J].Journal of Ceophysical Research,1988,(B4):3268-3296.
  • 9Lin C,Cohen M H. Quantitative Methods for the Microgeometric Modeling[J].Journal of Applied Physics,1982,(06):4152-4165.
  • 10J H Dunsmuir,S R Ferguson,K L D'Amico. X-ray micro-tomography:a new tool for the characterization of porous media[A].1991.

二级参考文献32

  • 1刘中春,岳湘安,王正波.低渗透油藏岩石物性对渗流的影响分析[J].油气地质与采收率,2004,11(6):39-41. 被引量:26
  • 2姚军,赵秀才,衣艳静,陶军.数字岩心技术现状及展望[J].油气地质与采收率,2005,12(6):52-54. 被引量:91
  • 3[1]Mcnamara G R, Zanetti G. Use of the Lattice Boltzmann Equation to Simulate Lattice-gas Automata[J].Phys.Rev.Lett. 1988(61):2331~2335.
  • 4[2]Benzi R, Succi S,Vergassola M. The Lattice Boltzmann Equation:Theory and Application[J].Phys.Reports. 1992(222):145~197.
  • 5[3]Qian Y H,Dhumieres D,Lallemend P.Lattice BGK Models for Navier-Stokes Equation[J].Europhys.Lett.,1992(17):479~484.
  • 6[4]Miller W.Flow in the Driven Cavity Calculated by the Lattice Boltzmann Method[J].Phys.Rev.E., 1995(51):3659~3669.
  • 7[5]Qian Y H, Succi S, Massaioli F et al. A Benchmark for Lattice BGK Model:Flow Over a Backward-facing Step[J].Fields Institute Communications.,1996(6):207~215.
  • 8[6]Higuera F J, Succi S.Simulating the Flow Around a Circular Cylinder with a Lattice Boltzmann Equation[J].Europhys.Lett.,1989(8):517~521.
  • 9[7]Vangenabeek O, Rothman D H.Macroscopic Manifestations of Microscopic Flows Through Porous-media Phenomenology From Simulation[J].Ann.Rev.Earth and Planetary Sci.,1996(234):63~87.
  • 10[8]Eggels J G M.Direct and Large-eddy Simulation of Turbulent Fluid Flow Using the Lattice-Boltzmann Scheme[J].Int J.Heat and Fluid Flow.,1996(17):307~323.

共引文献73

同被引文献66

引证文献6

二级引证文献32

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部