期刊文献+

紫杉醇纳米粒子的制备及其应用 被引量:4

Preparation and application of paclitaxel nanoparticles
下载PDF
导出
摘要 背景:紫杉醇临床用剂型紫素易引起过敏反应,因此研制新的紫杉醇新剂型就显得十分有意义。目的:研制紫杉醇新剂型,观察其在动物模型上治疗肿瘤的效果。方法:合成具有自主知识产权的生物可降解材料医用聚己内酯。采用溶剂替代法制备载紫杉醇纳米粒子,对其粒径、形态、紫杉醇含量、体外释放等进行测定。选用TA2系实验小鼠,建立乳腺癌动物模型,随机分为5组,分别局部注射生理盐水、紫素、低剂量、中剂量及高剂量紫杉醇纳米粒子进行治疗。结果与结论:实验制备的紫杉醇纳米粒子平均粒径约为153.54nm,包埋率为87.25%,紫杉醇含量19.06%。体外可恒定释放30d以上。2周药物治疗显示,各治疗组均不同程度上抑制了肿瘤的生长,其中紫杉醇纳米粒子中、高剂量组的抑瘤率明显高于紫素治疗组(P<0.01)。提示紫杉醇纳米粒子可缓释药物,中剂量组和高剂量组对小鼠乳腺癌的抑瘤率高于紫素组。 BACKGROUND: Paclitaxel is easy to cause allergic reactions in clinic; therefore, the development of a new paclitaxel formulation appears to be very meaningful. OBJECTIVE: To prepare paclitaxel nanoparticles and to observe their therapeutic efficacy on mouse models of breast cancer. METHODS: A biodegradable poly-caprolactone was used as drug delivery material. Paclitaxel nanoparticles were prepared by solvent displacing method. The paclitaxel nanoparticles were characterized for size, drug loading capacity, and in vitro release. Trial mice were randomly divided into negative control group, paclitaxel positive control group, low-dose paclitaxel nanoparticles group, mid-dose paclitaxel nanoparticles group, and high-dose paclitaxel nanoparticles group. RESULTS AND CONCLUSION: The average size of paclitaxel nanoparticles was around 153.54 nm. The encapsulation efficiency of paclitaxel nanoparticles was 87.25%. Loading amount of paclitaxel in the paclitaxel nanoparticles was 19.06%. In vitro, nanoparticles maintained sustained release of paclitaxel for over 30 days. After 2 weeks of treatment, the inhibition of tumor growth ratio was more obvious in the mid-dose and high-dose paclitaxel nanoparticles groups than in the paclitaxel positive control group (P〈0.01). These findings indicate that the inhibition of tumor growth ratio of paclitaxel nanoparticles (mid-dose and high-dose groups) is better than that of paclitaxel.
出处 《中国组织工程研究》 CAS CSCD 2012年第16期2869-2874,共6页 Chinese Journal of Tissue Engineering Research
基金 国家自然科学基金资助项目(30800225 50830106)~~
  • 相关文献

参考文献21

  • 1伍彬,杨宗发.紫杉类药物药理及临床研究进展[J].中国药业,2004,13(6):77-78. 被引量:10
  • 2Xu M,Takanashi M,Oikawa K. Identification of a novel role of Septin 10 in paclitaxel-resistance in cancers through a functional genomics screen[J].Cancer Science,2012.
  • 3Dong XL,Xu PF,Miao C. Hypoxia decreased chemosensitivity of breast cancer cell line MCF-7 to paclitaxel through cyclin B1[J].Biomedicine and Pharmacotherapy,2012,(01):70-75.
  • 4Chen J,Sun WL,Wasylyk B. c-Jun N-terminal kinase mediates microtubule-depolymerizing agent-induced microtubule depolymerization and G2/M arrest in MCF-7 breast cancer cells[J].Anti-Cancer Drug Design,2012,(01):98-107.
  • 5Xie J,Wang CH. Self-assembled biodegradable nanoparticles developed by direct dialysis for the delivery of paclitaxel[J].Pharmaceutical Research,2005,(12):2079-2090.
  • 6Dong Y,Feng SS. Nanoparticles of poly(D,L-lactide)/methoxy poly(ethylene glycol)-poly(D,L-lactide) blends for controlled release of paclitaxel[J].Journal of Biomedical Materials Research Part A,2006,(01):12-19.
  • 7Lee KC,Maturo C,Rodriguez R. Nanomedicine-nanoemulsion formulation improves safety and efficacy of the anti-cancer drug paclitaxel according to preclinical assessment[J].Journal of Nanoscience and Nanotechnology,2011,(08):6642-6656.
  • 8孙慧,郝希山,战忠利,杨海贤,张爱莲,马杰,高进.TA2系小鼠乳腺癌肺转移(BCML-TA299)模型的建立及生物学特性的实验研究[J].中国肿瘤临床,2003,30(12):886-890. 被引量:14
  • 9Zhang Y,Zhang H,Wang X. The eradication of breast cancer and cancer stem cells using octreotide modified paclitaxel active targeting micelles and salinomycin passive targeting micelles[J].Biomaterials,2012,(02):679-691.
  • 10Shin HC,Alani AW,Cho H. A 3-in-1 polymeric micelle nanocontainer for poorly water-soluble drugs[J].Molecular Pharmacology,2011,(04):1257-1265.

二级参考文献82

共引文献43

同被引文献29

  • 1陈丽荣,郑树,MCWilingham,范伟民.紫杉醇诱发人乳癌细胞凋亡的机制研究[J].中华肿瘤杂志,1997,19(2):103-106. 被引量:82
  • 2Xu M,Takanashi M,Oikawa K. Identification of a novel role of Septin 10 in paclitaxel-resistance in cancers through a functional genomics screen[J].{H}CANCER SCIENCE,2012,(04):821-827.
  • 3Dong XL,Xu PF,Miao C. Hypoxia decreased chemosensitivity of breast cancer cel line MCF-7 to paclitaxel through cyclin B1[J].{H}Biomedicine and Pharmacotherapy,2012,(01):70-75.
  • 4Ma GL,Miao Bl,Song CX. Thermosensitive PCL-PEG-PCL hydrogels:Synthesis,characterization,and delivery of proteins[J].{H}Journal of Applied Polymer Science,2010,(04):1985-1993.
  • 5Lee KC,Maturo C,Rodriguez R. Nanomedicine-nanoemulsion. Formulation improves safety and efficacy of the anti-cancer drag paclitaxel according to preclinical assessment[J].{H}JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY,2011,(08):6642-6656.
  • 6Gong C,Shi S,Wu L. Biodegradable in situ gel-forming control ed drug delivery system based on thermosensitive PCL-PEG-PCL hydrogel. Part 2:sol-gel-sol transition and drug delivery behavior[J].{H}ACTA BIOMATERIALIA,2009,(09):3358-3370.
  • 7Bea SJ,Suh JM,Sohn YS. Thermogel ing Poly(caprolactone-b-ethylene glycol-b-caprolactone)aqueous solutions[J].{H}MACROMOLECULES,2005,(12):5260-5265.
  • 8Chao G,Fan L,Jia W. Synthesis,characterization and hydrolytic degradation of degrable poly(butylene terephthalate)/poly(ethlene glycol)(PBT/PEG)copolymers[J].{H}Journal of Materials Science:Materials in Medicine,2007,(03):449-455.
  • 9Jeong B,Bae YH,Lee DS. Biodegradable block copolymers as injectable drug- delivery system[J].{H}NATURE,1997,(6645):860-862.
  • 10Ron ES,Bromberg LE. Temperature-responsive gels and thermogel ing polymer matrices for protein and peptide delivery[J].{H}Advanced Drug Delivery Reviews,1998,(03):197-221.

引证文献4

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部