期刊文献+

随机延迟微分方程半隐式Euler方法的T-稳定性

下载PDF
导出
摘要 本文主要研究了带有延迟项的随机微分方程Euler方法的T-稳定性.通过应用半隐式Euler方法对带有特定驱动项的线性方程的讨论,得出该方法T-稳定性的条件.
作者 孙洁
出处 《赤峰学院学报(自然科学版)》 2012年第10期7-8,共2页 Journal of Chifeng University(Natural Science Edition)
  • 相关文献

参考文献5

  • 1M.Z.Liu,W.R.Cao,Z.C.Fan. Convergence and Stability of the Semi-implicit Euler Method for A Linear Stochastic Differential Delay Equation[J]. J. Comp. Appl Math.2004, 170:255-268.
  • 2曹婉容,刘明珠.随机延迟微分方程半隐式Milstein数值方法的稳定性[J].哈尔滨工业大学学报,2005,37(4):446-448. 被引量:8
  • 3W.R.Cao, M.Z.Liu,Z.C.Fan. MS-stability of the Euler- Maruyama method for stochastic differential delay equa- tions[J].Appl. Math. and Comp. 2004, 159:127-135.
  • 4曹婉容,刘明珠.随机延迟微分方程Euler-Maruyama数值方法的T-稳定性[J].哈尔滨工业大学学报,2005,37(3):303-305. 被引量:10
  • 5X.R.Mao . Razumfikhin-type theorems on exponential stability of stochastic functional differential equations [J] Stochastic Process and their Applications. 1996,65:233- 250.

二级参考文献16

  • 1BUCKWER E. Introduction to the numerical analysis of stochastic delay differential equations [ J ]. J Comput Appl Maths, 2000, 125:297 -307.
  • 2KüCHIFER U, PLATEN E. Strong discrete time approximation of stochastic differential equations with time delay [J]. Math Comput Simulation, 2000, 54:189-205.
  • 3CAO WANRONG, LIU MINGZHU, FAN ZhENCHENG.MS - stability of the Euler - Maruyama method for stochastic differential delay equations [ J ]. Applied Mathematics and Computation, 2004, 159: 127-135.
  • 4BURRAGE K, BURRAGE P, MITSUI T. Numerical solutions of stochastic differential equations - implementation and stability issues [ J ]. J Comput Appl Maths, 2000, 125 : 171 - 182.
  • 5SAITO Y, MITSUI T. T - stability of numerical schemes for stochastic differential equations [ J ].World Sci Ser Appl Anal, 1993, 2:333 -344.
  • 6MOHAMMED S E A. Stochastic functional differential equations [ M ]. London: Research Notes in Mathematics, 1984.
  • 7MAO XUERONG. Exponential stability of stochastic differential equations [ M ]. New York: Marcal Dekker,1994.
  • 8MAO XUERONG. Razumikhin - type theorems on exponential stabifity of stochastic functional differential equations [ J ]. Stochastic Processes and their Applications, 1996, 65 : 233 -250.
  • 9TALAY D. Approximation of upper Lyapunov exponents of bilinear stochastic differential systems [ J ].SIAM J Numer Anal, 1991, 28:1141-1164.
  • 10KOLMANOVSKII V, MYSHKIS A. Applied theory of fundamental differential equations [ M ]. Dordrecht:Kluwer Academic Publishers, 1992.

共引文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部