期刊文献+

Analysis of Cost Functions for Retrieving Sea Surface Salinity 被引量:4

Analysis of Cost Functions for Retrieving Sea Surface Salinity
下载PDF
导出
摘要 Two kinds of Bayesian-based cost functions (i.e., the unconstrained cost function and parameter-constrained cost function) are investigated for retrieving the sea surface salinity (SSS). In low SSS regions, we have analyzed the sensitivity of the two cost functions to geophysical parameters. The results show that the unconstrained cost function is valid for retrieving several parameters (including SSS, wind speed and significant wave height), and the constrained cost function, which largely depends on the accuracy of reference values, may lead to large retrieval biases. Furthermore, as a retrieval parameter, the sea surface temperature (SST) can re-sult in the divergence of other geophysical parameters in an unconstrained cost function due to the strong sensitivity of brightness temperature to SST. By using the unconstrained cost function and the simulated brightness temperature TB with white noises, the retrieval biases of SSS are discussed with the following two procedures. Procedure a): the simulated TB values are first averaged, and then SSS is retrieved. Procedure b): the SSS is directly retrieved from the simulated TB , and then the retrieved SSS values are aver-aged. The results indicate that, for low SSS and SST distributions, the SSS retrieval by procedure a) has less biases compared with that by procedure b), while the two procedures give almost the same retrieval results for high SSS and SST sea regions. Two kinds of Bayesian-based cost functions (i.e., the unconstrained cost function and parameter-constrained cost function) are investigated for retrieving the sea surface salinity (SSS). In low SSS regions, we have analyzed the sensitivity of the two cost functions to geophysical parameters. The results show that the unconstrained cost function is valid for retrieving several parameters (including SSS, wind speed and significant wave height), and the constrained cost function, which largely depends on the accuracy of reference values, may lead to large retrieval biases. Furthermore, as a retrieval parameter, the sea surface temperature (SST) can re-sult in the divergence of other geophysical parameters in an unconstrained cost function due to the strong sensitivity of brightness temperature to SST. By using the unconstrained cost function and the simulated brightness temperature TB with white noises, the retrieval biases of SSS are discussed with the following two procedures. Procedure a): the simulated TB values are first averaged, and then SSS is retrieved. Procedure b): the SSS is directly retrieved from the simulated TB , and then the retrieved SSS values are aver-aged. The results indicate that, for low SSS and SST distributions, the SSS retrieval by procedure a) has less biases compared with that by procedure b), while the two procedures give almost the same retrieval results for high SSS and SST sea regions.
作者 QI Zhen WEI Enbo
出处 《Journal of Ocean University of China》 SCIE CAS 2012年第2期147-152,共6页 中国海洋大学学报(英文版)
基金 supported by the National Natural Science Foundation of China (Grant No. 40876094) the National 863 Project of China (Grant Nos. 2009AA09Z102 and 2008AA09A403)
关键词 cost function sea surface salinity and temperature brighmess temperature 成本函数 函数分析 盐度 地球物理参数 检索参数 反演 表面 海面温度
  • 相关文献

参考文献1

二级参考文献11

  • 1Le-vine D M,Abraham S 2002 IEEE Trans Geosci Remote Sens 40 771
  • 2Klein L,Swift C 1977 IEEE Trans Antennas Propag 125 104
  • 3Wei E B,Ge Y 2005 Chinese Physics 14 1259
  • 4Iagerloef G,Swift C,Le-vine D M 1995 Oceanogr 8 44
  • 5Hollinger J 1971 IEEE Tram Geosci Electron GE-(93)165
  • 6Lerner R,Hollinger J 1977 Remote Sensing Environment 6 251
  • 7Gabarro C,Font J,Camps A,Vall-llossera M,Julia A 2004 Geophys Res.Lett.31 L01309,doi:10.1029/2003GL018964
  • 8Durden S,Vesecky J 1985 IEEE J.Oceanic Eng.oE-(10)445
  • 9Elfouhaily T,Chapron B,Katsaros K,Vandermark D 1997 J.Geophys Ret.102(C7)15781
  • 10Xu Q,Liu Y G 2004 Sci China Ser D-Earth Sci.47 1045

共引文献7

同被引文献23

  • 1史久新,朱大勇,赵进平,曹勇.海水盐度遥感反演精度的理论分析[J].高技术通讯,2004,14(7):101-105. 被引量:14
  • 2冯士稚,李凤岐,李少菁.海洋科学导论.北京:高等教育出版社,1999:133-143.
  • 3FontJ .Camps A,Borges Av et al. SMOS: The challenging sea surface salinity measurement from space[J]. Proceedings of the IEEE,2010,98(5): 649-665.
  • 4Vine D,l.agerloef G,Torrusio S. Aquarius and remote sensing of sea surface salinity from space[J]. Proceedings of the IEEE,2010,98(5): 688- 703.
  • 5Vine Dv l.agerloef G,Colomb Fv et al. Aquarius: an instrument to monitor sea surface salinity from spacej IJ, IEEE Trans Geosci Remote Sens , 2007,45(7): 2040-2050.
  • 6Barre H,Duesmann B,Smos K Y. The mission and the system[J]. IEEE Trans Geosci Remote Sens,2008,46(3): 587-593.
  • 7Yin X,BoutinJ .Martin Nvet al. Optimization of L-band sea surface emissivity models deduced from SMOS data]]]. IEEE Trans Geosci Remote Sens,2012,50(5): 1414-1426.
  • 8Mecklenburg Sv Drusch M, Kerr Y, et al. ESA's soil moisture and ocean salinity mission: mission performance and operations[J]. IEEE Trans Geosci Remote Sens,2012,50(5): 1354-1366.
  • 9Yin X,BoutinJ,Spurgeon P. First assessment of SMOS data over open ocean: Part IPacic Ocean[J]. IEEE Trans Geosci Remote Sens,2012, 50(5): 1648-1661.
  • 10BoutinJ, Martin N, Yin X. First assessment of SMOS data over open ocean: Part Il-r sea surface salinity[J]. IEEE Trans Geosci Remote Sens , 2012,50(5): 1662-1675.

引证文献4

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部