期刊文献+

基于Copula函数的股指尾部相关性研究——以道琼斯工业指数与恒生指数为例 被引量:3

Study of Tail Dependence Analysis of DJI&HIS Based on Copula Method
原文传递
导出
摘要 鉴于两步参数估计法在应用中存在误差大、计算复杂等缺陷,采用基于经验分布的半参数估计与非参数估计法确定相应边缘分布与Copula参数,对突发事件下的道琼斯工业指数与恒生指数之间的尾部相关性进行量化.研究发现ClaytonCopula,Gumbel Copula能够较好地刻画股指收益率序列间的尾部相关关系;道指与恒生指数存在着正的尾部相关且这种相关是非对称性的;在各个置信水平上,下尾损失均较上尾收益高,且下尾相关系数的增长幅度远大于上尾相关系数的增长幅度;极端事件造成的道指收益的剧烈下跌引发了恒生指数收益更强烈的相关反应,其造成的影响远超过两个市场同时上涨时的作用. The semiparametric method metric method for Copula estimation are for marginal distribution estimation and nonpara- employed due to relatively big deviation produced by the fully parametric methods, namely inference function and maximum likelihood methods. This paper investigates the tail dependence structure between DowJone Index(DJI) and Hangseng Index(HIS) under the emergency. We find that Gumbel copula and Clayton copula can depict the tail dependence between indexes very well. The correlation is positive and asymmetric. Under each confidence level, the loss of lower tail is more than the return of upper tail, and the growth of lower dependence is larger than upper denpendence. The loss of DJI caused by extreme events causes more serious loss of HIS, and its influence has exceeded the effect of two-market increase at the same time.
机构地区 中南大学商学院
出处 《数学的实践与认识》 CSCD 北大核心 2012年第9期19-27,共9页 Mathematics in Practice and Theory
基金 国家自然科学基金资助课题(70973145 71171201) 教育部新世纪优秀人才支持计划(NCET-11-0524)
关键词 COPULA 尾部相关性 经验分布函数 K—S法 copula tail dependence empirical distribution K-S Method
  • 相关文献

参考文献22

  • 1Embrechts, P. et al. Extreme value theory as a risk management tool [J]. North American Actuarial Journal. 1999, 3: 1-22.
  • 2Nelsen, R. An introduction to Copulas [M]. New York: Springer-Verlag, 1999.
  • 3Nelsen, R. An Introduction to Copulas[M]. New York: Springer Series in Statistics, 2006.
  • 4Rockinger, Michael & Jondeau. Conditional dependency of financial series:an application of copu~ las[N]. Working Paper,2001.
  • 5Patton A J. Modeling: time-varying exchange rate dependence using the conditional copula[R]. Working Paper of London School of Economics & Political Science, 2001.
  • 6Juri A, Wuthrich M V.Copula convergence theorems for tail events[J]. Insurance: Mathematics and Economics, 2002(30): 411- 427.
  • 7Juri A, Wuthrich M V. Tail dependence from a distributional point of view[J]. Extremes, 2003(6): 213-246.
  • 8Johan Segers. Non-Parametric Inference for Bivariate Extreme-Value Copulas[R]. Catholic Univer- sity of Louvain, Workingpaper, 2004.
  • 9Viviana Fernandez. Copula-based measures of dependence structure in assets returns[J]. Physica A, 2008, 387: 3615-3628.
  • 10张尧庭.连接函数(copula)技术与金融风险分析[J].统计研究,2002,19(4):48-51. 被引量:295

二级参考文献42

共引文献463

同被引文献36

  • 1韦艳华,张世英.多元Copula-GARCH模型及其在金融风险分析上的应用[J].数理统计与管理,2007,26(3):432-439. 被引量:71
  • 2余平,钟波.基于Copula函数的沪深股市相关性研究[J].山西师范大学学报(自然科学版),2007,21(3):28-32. 被引量:15
  • 3SKLAR A.Functions de repartition(a)n dimensions et leursmarges[J].Publication de l’Institut de Statistique de l’Universite de Paris,1959,8(12):229-231.
  • 4NELSON R B.An introductions to copulas[M].New York:Springer,1999.
  • 5DIAS A,EMBRECHTS P.Dynamic Copula models for multivariate high-frequency data in finance[J].ETHZurich,2004,7(5):24-37.
  • 6LI M,YANG L.Modeling the volatility of futures return in rubber and oil-A Copula-Based GARCH approach[J].Economic Modeling,2013,7(16):576-581.
  • 7DING Z X,ENGLE R F.Large scale conditional covariance matrix modeling,estimation and testing[J].Academia Economic Papers,2001,29(2):157-184.
  • 8ROMANO C.Applying Copula function to risk management[J].Rome University,2002,26(3):73-77.
  • 9UMBERTO Cherebin,ELISA Luciano,WALTER V.Copula Methods in Finance[J].England:Johnwiley&Sonsltd,1988.
  • 10LESNEVSK V,NELSON L B,STAUM J.Simulation of Coherent Risk Measures Based on Generalized Scenarios[J].Management Science,2007,53(11):1756-1769.

引证文献3

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部