期刊文献+

基于Kernel Discriminant Canonical Correlation(KDCC)的多观测样本分类算法

The Classification Algorithm of Multiple Observation Samples Based on Kernel Discriminant Canonical Correlation
原文传递
导出
摘要 针对多观测样本分类问题,提出一种基于Kernel Discriminant CanonicalCorrelation(KDCC)来实现多观测样本分类的模型.该算法首先把原空间样本非线性的投影到高维特征空间,通过KPCA得到核子空间,然后在高维特征空间定义一个使类内核子空间的相关性最大,同时使类间核子空间的相关性最小的KDCC矩阵,通过迭代法训练出最优的KDCC矩阵,把每个核子空间投影到KDCC矩阵上得到转换核子空间,采用典型相关性作为转换核子空间之间的相似性度量,并采用最近邻准则作为多观测样本的分类决策,从而实现多观测样本的分类.在三个数据库上进行了一系列实验,实验结果表明提出的方法对于多观测样本分类具有可行性和有效性. A novel pattern recognition model, which is the classification algorithm of multiple observation samples based on kernel discriminant canonical correlation is proposed in this paper. The original input space is nonlinear mapping into a high-dimensional feature space, and each image set is represented by a kernel subspace using KPCA. Then define a KDCC matrix, which maximizes the similarities of within-subspaces, and simultaneously minimizes those of between-kernel subspaces. The paper proposes an iterative algorithm to train the optimal KDCC matrix, and each kernel subspace projects into the KDCC matrix so as to obtain the transformed kernel subspace. Use canonical correlation to solve the similarity between the transformed kernel subspaces. Then the nearest neighbor classifier is used to solve the classification of multiple observation samples. Experiments on three types of databases prove that the proposed method is valid and efficient.
出处 《数学的实践与认识》 CSCD 北大核心 2012年第9期96-107,共12页 Mathematics in Practice and Theory
基金 国家自然科学基金(61071199) 河北省自然科学基金(F2010001297) 中国博士后自然科学基金(20080440124) 第二批中国博士后基金特别资助(200902356)
关键词 KDCC 典型相关性 最近邻分类 多观测样本 KDCC canonical correlation nearest neighbor classification multiple observation samples
  • 相关文献

参考文献14

  • 1Kim T K, Kittler J, Cipolla R. On-line learning of mutually orthogonal subspaces for face recognition by image sets[J], in: IEEE Trans. Image Processing, 2010, 19(4): 1067-1074.
  • 2Shakhnarovich G, Fisher J.W, Daxrel T. Face recognition from long-term observations[A]. European Conference on Computer Vision(ECCV), 2002, 3: 851-868.
  • 3Arandjelovic O, Shakhnarovich G, Fisher J, Cipolla R, Darrell T. Face recognition with image sets using manifold density divergence [A]. IEEE International Conference on Computer Vision and Pattern Recognition(CVPR), 2005, 1: 581-588.
  • 4Arandjelovic O, Cipolla R. Face recognition from face motion manifolds using robust kernei resistor- average distance[A], in:IEEE Workshop on Face Processing in Video, 2004, 5: 88-93.
  • 5Yamaguchi O, b-klkui K, Maeda K. Face recognition using temporal image sequence[A]. IEEE Inter- national Conference on Automatic Face and Gesture Recognition, 1998: 318-323.
  • 6Sakano H, Mukawa N. Kernel mutual subspace method for robust facial image recognition[A]. Fourth International Conference on Knowledge-based Intelligent Engineering Systems and Altied Technologies, 2000, 1: 245-248.
  • 7Wolf L, Shashua A. Learning over sets using kernel principal angles[J], in: Machine Learning Re- search, 2003,4(10):913-931.
  • 8Kim T K, Kittler J, Cipolla R. Discriminative learning and recognition of image set classes using canonical correlations[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, TD7, 29(2): 1005-1018.
  • 9Kim T K, Arandjelovic O, Cipolla R. Boosted manifold principal angles for ~mage set-based recog- nition[J], in: Pattern Recognition, 2007, 40(9): 2475-2484.
  • 10Li X, Fukui K, Zheng N N. Image-set based face recognition using boosted global and local principal angles[A], in: 9th Asian Conference on Computer Vision(ACCV), 2010: 323-332.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部