期刊文献+

Banach空间中渐近非扩张强连续半群不动点的粘性逼近 被引量:2

A New Class of General Nonconvex Variational Inequality Problems
原文传递
导出
摘要 在具有一致Gateaux可微范数的Banach空间中,讨论了一个逼近渐近非扩张强连续半群不动点的两步粘性逼近方法,并在一定条件下证明了该方法所得到的迭代序列的强收敛性. In this paper, a modified two-step viscosity iterative scheme is proposed for approximating the fixed point of Asymptotic nonexpansive strongly continuous semi-group in a real Banach space with a uniformly G?teaux differentiable norm, whose strong convergence is proved under some suitable conditions.
作者 唐艳 闻道君
出处 《数学的实践与认识》 CSCD 北大核心 2012年第9期225-230,共6页 Mathematics in Practice and Theory
基金 国家自然科学基金(11001287) 重庆市教委科技研究项目(KJ 110701)
关键词 渐近非扩张映射 粘性逼近方法 不动点 强收敛 asymptotic nonexpansive viscosity approximation fixed point strong convergence
  • 相关文献

参考文献10

  • 1Browder F E. Convergence of approximates to fixed points of nonexpansive nonlinear mappings in Banach spaces[J]. Arch Ration Mech Anal, 1967, 24: 82-90.
  • 2Reich S. Strong convergence theorems for resolvents of accretive operators in Banach spaces[J]. J Math Anal Appl, 1980, 75: 287-292.
  • 3Chang S S. On Chidume's open questions andapproximation solutions of multivalued strongly ac- cretive mappings equations in Banach spaces[J]. J Math Anal Appl, 1997, 216:94 -111.
  • 4唐艳,闻道君.非扩张映射不动点的粘性逼近方法[J].重庆工商大学学报(自然科学版),2009,26(5):420-423. 被引量:2
  • 5Yonghong Yao. Strong convergence of an iterative method for nonexpansive mappings with control conditions[J]. Nonlinear Analysis, 2009, 70: 2332-2336.
  • 6田有先,陈六新.有限一致拟-李卜希兹映象族公共不动点的逼近[J].西南大学学报(自然科学版),2009,31(4):25-29. 被引量:6
  • 7S Reich. On the Aymptotic behavior of nonlinear semigroups and the range of accretive operators[J]. J Math Anal Appl, 1981, 79: 113-126.
  • 8Liu L S. Ishikawa and Mann iterative processes with errors for nonlinear strongly accretive mappings in Banach space[J]. J Math Anal Appl, 1995, 194: 114-125.
  • 9高兴慧,马乐荣,周海云.拟φ—非扩张映像族的公共不动点的强收敛定理[J].数学的实践与认识,2011,41(20):233-239. 被引量:1
  • 10王帮容,闻道君.非扩张映射粘性逼近的强收敛性[J].数学的实践与认识,2011,41(12):216-221. 被引量:2

二级参考文献39

  • 1田有先,胡晓力.p-凸度量空间更广义拟压缩映射不动点迭代[J].四川师范大学学报(自然科学版),2006,29(3):288-293. 被引量:2
  • 2Takahashi W. A Convexity in Metric Space and Nonexpansive Mappings[J]. Kodai Math Sem Rep, 1970, 22:142 -- 149.
  • 3Kirk W A, Krasnoselskii's. Iteration Process in Hyperbolic Space [J]. Numer Funet Anal Optimiz, 1982, 4:371 --381.
  • 4Goebel K, Kirk W A. Iteration Processes for Nonexpansive Mappings [J].Contemporary Math, 1983, 21 : 115 - 123.
  • 5Petryshyn W V, Williamson T E. Strong and Weak Convergence of the Sequence of the Successive Approximations for Quasi-Nonexpansive Mappings [J].J Math Anal Appl, 1973, 43:459- 497.
  • 6Ghosh M K, Debnath L. Convergence of tshikawa Iterates of Quasi-Nonexpansive Wappings[J]. J Math Anal Appl, 1997, 207: 96-103.
  • 7Liu Qihou. Iterative Sequence for Asymptotically Quasi-Nonexpansive Mappings [J]. J Math Anal Appl, 2001, 259: 1-7.
  • 8Liu Qihou. Iterative Sequence for Asymptotically Quasi-Nonexpansive Mappings with Error Member [J]. J Math Anal Appl, 2001, 259: 18--24.
  • 9Liu Qihou. herative Sequence for Asymptotically Quasi-Nonexpansive Mappings with an Error Member of Uniform Convex Banach Space [J]. J Math Anal Appl, 2002, 266: 468--471.
  • 10Tian Y X. Convergence of an Ishikawa Type Iterative Scheme for Asymptotically Quasi-Nonexpansive Mappings [J]. Comput Math Appl, 2005, 49:1905--1912.

共引文献7

同被引文献9

  • 1Halpern B. Fixed points of non-expanding maps[J]. Bull Am Math Soc, 1967, 73: 957-961.
  • 2Reich S. Strong convergence theorems for resolvents of accretive operators in Banach spaces[J]. J Math Anal Appl, 1980, 75: 287-292.
  • 3A.Moudifi,Viscosity approximation methods for fixed point problems[J]. J Math Anal Appl, 2000, 241: 46-55.
  • 4Yao Yonghong. Strong convergence of an iterative method for nonexpansive mappings with control conditions[J]. Nonlinear Analysis, 2009, 70: 2332-2336.
  • 5Reich S. On the Aymptotic behavior of nonlinear semigroups and the range of accretive opera- tors[J].J Math Anal Appl, 1981, 79: 113-126.
  • 6Liu L S. Ishikawa and Mann iterative processes with errors for nonlinear strongly accretive mappings in Banach space[J]. J Math Anal Appl, 1995, 194: 114-125.
  • 7田有先,陈六新.有限一致拟-李卜希兹映象族公共不动点的逼近[J].西南大学学报(自然科学版),2009,31(4):25-29. 被引量:6
  • 8闻道君,邓磊.渐近非扩张映射的粘滞逼近方法[J].西南师范大学学报(自然科学版),2010,35(3):37-40. 被引量:7
  • 9唐艳.Banach空间中非扩张映射不动点的粘性逼近方法[J].数学杂志,2013,33(1):99-104. 被引量:4

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部