期刊文献+

基于人工鱼群算法的协同过滤推荐算法 被引量:7

Collaboration filtering recommendation algorithm based on artificial fish swarm algorithm
下载PDF
导出
摘要 基于原始人工鱼群算法,提出在觅食行为中保留较优值以替代随机值,在追尾和聚群行为中比较最优值和中心值再作移动行为的选择,在迭代进行中,实现视野的自适应调整。这样改进后的人工鱼群算法应用于协同过滤推荐系统中,实现用户聚类,从而提高协同过滤推荐系统的最近邻查询速度,降低搜索开销。实验测试结果显示了改进的人工鱼群算法具有收敛速度快,稳定性高的特性,且能获得较优的聚类目标值。将改进的人工鱼群算法用于协同过滤推荐算法中,提高了算法的推荐精度。 Based on the study of the artificial fish swarm algorithm,it is proposed that the preying behavior is improved by keeping the best individual instead of the random individual,the swarming behavior and following behavior are improved by comparing the best individual and the center individual to choice the moving acts,in the iteration,the vision of artificial fish is dynamically adjusted.The improved artificial fish swarm is applied in the collaboration filtering recommendation algorithm,which realize user clustering,for improving the query speed of the nearest neighbor in the collaborative filtering recommendation system,reducing the search spending.The experiment test shows that the improved artificial fish swarm algorithm have some advantages such as faster execution speed,higher stability,and get the optimum clustering,finally it is verified that improved artificial fish swarm is applied in the collaboration filtering recommendation algorithm enhance the precision of recommendation.
作者 吴月萍 杜奕
出处 《计算机工程与设计》 CSCD 北大核心 2012年第5期1852-1856,共5页 Computer Engineering and Design
基金 上海自然科学基金项目(11zr1413700) 上海市教育委员会科研创新一般基金项目(09yz454)
关键词 人工鱼群算法 协同过滤 聚类 用户 改进 artificial fish swarm algorithm collaboration filtering clustering user improve
  • 相关文献

参考文献7

二级参考文献54

共引文献253

同被引文献57

  • 1王茜,杨莉云,杨德礼.面向用户偏好的属性值评分分布协同过滤算法[J].系统工程学报,2010,25(4):561-568. 被引量:24
  • 2江小平,李成华,向文,张新访,颜海涛.k-means聚类算法的MapReduce并行化实现[J].华中科技大学学报(自然科学版),2011,39(S1):120-124. 被引量:79
  • 3陈健,印鉴.基于影响集的协作过滤推荐算法[J].软件学报,2007,18(7):1685-1694. 被引量:59
  • 4李涛,王建东,叶飞跃,冯新宇,张有东.一种基于用户聚类的协同过滤推荐算法[J].系统工程与电子技术,2007,29(7):1178-1182. 被引量:70
  • 5ADOMAVICIUS G, TUZHILIN A. Toward the next generation ofrecommender systems : a survey of the state-of-the-art and possible ex- tensions[J]. IEEE Trans on Knowledge and Data Engineering, 2005,17(6) :?34-?49.
  • 6MELVILLE P,MOONEY R J, NAGARAJAN R. Content-boosted col- laborative filtering for improved recommendations [ C ]//Proc of the 19th National Conference on Artificial Intelligence. Menlo Park: American Association for Artificial Intelligence,2002 : 187-192.
  • 7CGEORGE T, MERUGU S. A scalable collaborative filtering frame- work based on co-clustering[ C ]//Proc of the 5th International Con- ference on Data Mining. Washington DC: IEEE Computer Society, 2005:625-628.
  • 8LI Rui-feng, ZHANG Yin, YU Hai-han. A social network-aware top-N recommender system using GPU [ C ]//Proc of the 11 th Annual Inter- national ACM/IEEE Joint Conference on Digital Libraries. 2011:287- 296.
  • 9PUNTHEERANURAK S, CHAIWTOOANUKOOL T. An item-based collaborative filtering method using item-based hybrid similarity [ C ]// Proc of the 2nd IEEE International Conference on Software Engineering and Service Science. 2011:469-472.
  • 10SONG Guo-hui, SUN Shu-tao, FAN W. Applying user interest on item- based recommender system [ C ]//Proc of International Conference on Computational Sciences and Optimization: 2012:635-638.

引证文献7

二级引证文献35

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部