期刊文献+

以程海为例用支持向量机回归算法预测叶绿素a浓度 被引量:7

Using Support Vector Regression Algorithm to Predict Chlorophyll-a Concentrations with Chenghai Lake for Example
下载PDF
导出
摘要 应用支持向量机回归(SVR)算法预测程海富营养化水体叶绿素a(Chl-a)的浓度,用留一法交叉验证(LOOCV)优化SVR预测模型的参数,并根据平均相对误差(MRE),讨论SVR预测模型的准确性。结果表明:用径向基核函数构建的SVR预测模型预测结果最优;SVR预测模型的预测值和实测值具有很好的一致性,相关系数为0.938,MRE为12.30%。SVR预测模型的建模结果优于人工神经网络(BP-ANN)预测模型,说明SVR算法能够准确预测Chl-a浓度。 The support vector regression (SVR) algorithm was used to predict the concentration of chlorophyll-a (Chl-a) of eutrophication water in Chenghai Lake, and the leave-one-out cross-validation (LOOCV) method was used to optimize the model parameters. Then the prediction accuracy of SVR model was discussed on the basis of the mean relative error (MRE). The results demonstrated that the SVR model built by radial basis kernel function (RBF) had the optimal predictive ability. The predicted values of SVR were in good consistency with the measured values of experiment. The correlation coefficient (R) and MRE of SVR model could reach 0.938 and 12.30% , respectively. It was found that the modeling results of SVR were better than that of back propagation artificial neural networks (BP-ANN) , suggesting that SVR was a valuable tool for the prediction of Chl-a.
出处 《环境工程技术学报》 CAS 2012年第3期207-211,共5页 Journal of Environmental Engineering Technology
基金 国家水体污染控制与治理科技重大专项(2009ZX07106-001)
关键词 支持向量机回归(SVR) 叶绿素A 程海 径向基核函数 support vector regression (SVR) chlorophyll-a Chenghai Lake radial basis kernel function
  • 相关文献

参考文献3

二级参考文献27

  • 1梁瑞驹,仲金华.太湖风生流的三维数值模拟[J].湖泊科学,1994,6(4):289-297. 被引量:42
  • 2Yao XJ, Zhang XY, Zhang RS, Liu MC, Hu ZD and Fan BT. Radial basis function neural network based QSPR for the prediction of critical pressures of substituted benzenes. Computers & Chemistry,2002, 26:159 - 169.
  • 3Chen JW, Xue XY, Schramm KW, Quan X, Yang FL and Kettrup A. Quantitative structure-property relationships for oetanol-air partition coefficients of polychlorinated naphthalenes, chlorobenzenes and p,p-DDT. Computational Biology and Chemistry, 2003, 27:165 -171.
  • 4Vapnik V. Statistical Learning Theory. New York:Wiley, 1998.
  • 5Richard M and Stephenson SM. Handbook of the thermodynamics of organic compounds. New York: Elsevier Science Publishing Co.lnc, 1987.
  • 6Resnick Varian. Recommender systems. Communications of the ACM, 1997,40(3) : 56 - 58.
  • 7Goldberg, Nichoh, Old, et al. Using collaborative filtering to weave an information tapestry. Communications of the A CM, 1992, 35 (12) : 61 - 70.
  • 8Schafer, Konstan Riedl, E-commerce recommendation applications. Data Mining and Knowledge Discovery, 2001, 5(1-2) : 115 - 153.
  • 9Adomavicins Tuzhilin, Toward the next generation of recommender systems: A survey of the state-of-the-art and possible extensions. IEEE Transactions on Knowledge and Data Engineering, 2005, 17(6) : 734 - 749.
  • 10Breese, Heckerman Kadie. Empirical analysis of predictive algorithms for collaborative filtering. In: Uncertainty in Artificial Intelligence. Morgan Kaufmann Publishers, 1998. 43 - 52.

共引文献31

同被引文献130

引证文献7

二级引证文献69

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部