摘要
在L-拓扑空间中利用半开βa-覆盖引入了半Nβ-紧性。讨论了半Nβ-紧性的性质,如一个半Nβ-紧集与一个半闭集的交仍为半Nβ-紧的;半Nβ-紧性在不定映射下保持不变;由分明拓扑空间(X,τ)拓扑生成的L-拓扑空间(LX,ωL(τ))是半Nβ-紧的当且仅当(X,τ)是半紧的。此外,还讨论半Nβ-紧性与半紧性的关系。
In this paper,the notion of semi-Nβ-compactness is introduced in L-topological spaces by means of the semiopen βa-cover.Some properties of the semi-Nβ-compactness is investigated,it is found that: the intersection of a semi-Nβ-compact set and a semiclosed set is still semi-Nβ-compact;the semi-Nβ-compactness is preserved under irresolute mapping;the L-fuzzy topological space(LX,ωL(τ)) generating by(X,τ) is semiNβ-compact if and only if(X,τ) is semi-compact.Finally,it is proved that semi-Nβ-compactness implies semi-ompactness.
出处
《模糊系统与数学》
CSCD
北大核心
2012年第2期12-16,共5页
Fuzzy Systems and Mathematics
基金
广东省自然科学基金资助项目(8152902001000004)
江门市科技计划项目(2008[103])