期刊文献+

L-拓扑空间的半N_β-紧性

Semi-N_β-compactness in L-topological Spaces
原文传递
导出
摘要 在L-拓扑空间中利用半开βa-覆盖引入了半Nβ-紧性。讨论了半Nβ-紧性的性质,如一个半Nβ-紧集与一个半闭集的交仍为半Nβ-紧的;半Nβ-紧性在不定映射下保持不变;由分明拓扑空间(X,τ)拓扑生成的L-拓扑空间(LX,ωL(τ))是半Nβ-紧的当且仅当(X,τ)是半紧的。此外,还讨论半Nβ-紧性与半紧性的关系。 In this paper,the notion of semi-Nβ-compactness is introduced in L-topological spaces by means of the semiopen βa-cover.Some properties of the semi-Nβ-compactness is investigated,it is found that: the intersection of a semi-Nβ-compact set and a semiclosed set is still semi-Nβ-compact;the semi-Nβ-compactness is preserved under irresolute mapping;the L-fuzzy topological space(LX,ωL(τ)) generating by(X,τ) is semiNβ-compact if and only if(X,τ) is semi-compact.Finally,it is proved that semi-Nβ-compactness implies semi-ompactness.
作者 何卫民
出处 《模糊系统与数学》 CSCD 北大核心 2012年第2期12-16,共5页 Fuzzy Systems and Mathematics
基金 广东省自然科学基金资助项目(8152902001000004) 江门市科技计划项目(2008[103])
关键词 L-拓扑空间 半开βa-覆盖 强半开βa-覆盖 半Nβ-紧性 L-topological Spaces; Semiopen βa-cover; Strong Semiopen βa-cover; Semi-Nβ-compactness
  • 相关文献

参考文献15

  • 1Chang C L. Fuzzy topological spaces[J]. Math. Anal. Appl. , 1968, (24):182-190.
  • 2Wang G J. A new fuzzy compactness defined by fuzzy nets[J]. Math. Anal. Appl. , 1983, (94) :1-23.
  • 3Shi F G. Np--compactness in L--tolopological spaces[C]//llth IFSA World Congress, 2005:268- 272.
  • 4Kudri S R T. Semicopactness and S- --closedness in L--fuzzy topological spaces[J].Fuzzy Sets and Systems,2000, (109):223-231.
  • 5Liu Y M. Compactness and Tychonoff theorem in L-fuzzy topological spaces[J].Acta Mathematica Sinica, 1981, (24) :260-268.
  • 6Goguen J A. The fuzzy Tychonoff theorem[J]. Math. Anal. Appl. , 1973, (43):734-742.
  • 7Zhao D S. The N--compactness in L--fuzzy topological spaces[J].Math. Anal. Appl. ,1987, (128):64-70.
  • 8Gierz G, et al. A compendium of continuous lattices[M]. Berlin:Springer Verlag,1980.
  • 9Dwinger P. Characterizations of the complete homomorphic images of a completely distributive complete lattices[J]. I, Nedrerl. Akad. wetenseh. Indag. Math. , 1982, (44) : 403-414.
  • 10Lowen R. Fuzzy topological spaces and fuzzy compactness[J]. Math. Anal. Appl. , 1976, (56) :621-633.

二级参考文献3

共引文献122

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部