期刊文献+

基于树的最小乘积模糊集代数

The Minimum Product Algebra of Fuzzy Set Based on Tree
原文传递
导出
摘要 给出Σ-代数、Σ-树和Σ-树函数的定义。引入了最小乘积模糊集代数,以此研究了一类特定形式的Σ-树。讨论了线性正规等式下的等价类的封闭性,证明了Σ-运算满足分配律并具有保序性。 The notions of Σ-algebra,Σ-tree and Σ-tree function are given.The minimum product algebras of fuzzy sets are introduced and a specific form of Σ-tree is studied.The closure properties of the equational classes defined by linear regular equations are illustrated,all Σ-operations verify distributivity law and possess order-preserving property are proved.
出处 《模糊系统与数学》 CSCD 北大核心 2012年第2期76-80,共5页 Fuzzy Systems and Mathematics
基金 国家自然科学基金资助项目(11071178)
关键词 模糊集 模糊集代数 模糊树自动机 Tree Fuzzy Set Algebra of Fuzzy Set Fuzzy Tree Automata
  • 相关文献

参考文献10

  • 1Zadeh L A. Fuzzy sets[J]. Information and Control,1965,8:338-353.
  • 2Denecke K, Wismath S L. Universal algebra and applications in theoretical computer science[M]. London .. Chapman Hall, 2002.
  • 3莫智文,舒兰.描述高维崎变模式的有效方法——Fuzzy 树文法[J].四川师范大学学报(自然科学版),1993,16(1):9-13. 被引量:2
  • 4esik Z, Liu G. Fuzzy tree automata [J]. Fuzzy Sets and Systems, 2007,158 (13) : 1450- 1460.
  • 5Bozapalidis S, Bozapalidoy O L. Fuzzy tree language recognizability[J]. Fuzzy Sets and Systems, 2010,161 (5)..716 -734.
  • 6杨文武,李永明,孙丹丹.格值树自动机与格值上下文无关树文法的等价性[J].计算机工程与科学,2008,30(11):92-94. 被引量:1
  • 7Davey B A, Priestley H A. Introduction to lattices and order[M]. New York-Cambridge University Press,2002.
  • 8G6cseg F, Steinby M. Tree automata[M]. Budapest :Akad6miai Kiad6,1984.
  • 9Gr6atzer G. Universal algebra[M]. Berlin:Springer, 1979.
  • 10Mordeson J, Malik D. Fuzzy automata and languages: Theory and applications[M]. London:Chapman: Hall/ CRC, 2002.

二级参考文献8

  • 1舒兰.关于Fuzzy3型文法与Fuzzy有限态自动机的关系[J].应用数学,1989,2(1):111-112. 被引量:11
  • 2Gecseg F, Steinby M, Tree Automata[M]. Budapest: Akademiai Kiado, 1984.
  • 3Esik Z, Liu G. Fuzzy Tree Automata[J]. Fuzzy Sets and Systems, 2007,158: 1450-1460.
  • 4Mordeson J, Malik D. Fuzzy Automata and Languages: Theory and Applications[M]. London: Chapman & Hall, 2002.
  • 5Droste M, Vogler H. Weighted Tree Automata and Weighted Logics[J]. Theoretical Computer Science, 2006,366 : 228- 247.
  • 6Esika Z, Weil P. Algebraic Recognizability of Regular Tree Languages[J]. Theoretical Computer Science, 2005,340: 291- 321.
  • 7Li Y M, Pedrycz W. Fuzzy Finite Automata and Fuzzy Regular Expressions with Memebership Values in Lattice-Ordered Monoids[J]. Fuzzy Sets and Systems, 2005,156:68-92.
  • 8Sheng L, Li Y M. Regular Grammars with Truth Values in Lattice-Ordered Monoids and Their Languges[J]. Soft Computing, 2006,10 (2): 79-86.

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部