期刊文献+

利用脉冲激光沉积技术制备镍纳米颗粒及其生长过程中的应变场模拟 被引量:1

Formation and Strain Distribution of Ni Nanoparticles Fabricated by Pulsed Laser Deposition
下载PDF
导出
摘要 利用脉冲激光沉积技术和快速退火成功地制备了镶嵌在非晶Al2O3薄膜中的Ni纳米颗粒,用高分辨率透射电子显微镜观察到镶嵌在非晶Al2O3薄膜中的Ni纳米颗粒,用有限元算法系统地模拟了Ni纳米颗粒生长过程中的应变场分布.研究发现:在Ni纳米颗粒的生长过程中,纳米颗粒受到母体Al2O3材料的非均匀的偏应变的作用,而且随着Ni纳米颗粒的长大,纳米颗粒受到母体Al2O3材料的非均匀偏应变也逐渐增加.这种非均匀偏应变对于纳米颗粒的晶格结构和形貌有较大的影响,可以通过调节Ni纳米颗粒生长过程中的应变场来实现对Ni纳米颗粒界面态的调控,从而进一步优化Ni纳米颗粒的物理性能. Ni nanoparticles embedded in the amorphous Al2O3 matrix were fabricated by using pulsed laser deposition and rapid thermal annealing.The results from high-resolution transmission electron microscope also revealed that the complete isolation of Ni nanoparticles embedded in amorphous Al2O3 matrix.The growth strain of Ni nanoparticle embedded in the Al2O3 matrix was investigated.Finite element calculations clearly indicate that the Ni nanoparticle incurs a net deviatoric strain.With the growth of Ni nanoparticle,the larger Ni nanoparticles incur stronger net deviatoric strain,which will have much influence on the structure and morphology of Ni nanoparticles.Strain engineering is an effective tool for tailoring the properties of Ni nanoparticles.
出处 《江西师范大学学报(自然科学版)》 CAS 北大核心 2012年第2期111-115,共5页 Journal of Jiangxi Normal University(Natural Science Edition)
基金 国家自然科学基金(11164008 11004087) 江西省自然科学基金(2009GQW0007)资助项目
关键词 Ni纳米颗粒 应变场 脉冲激光沉积 Ni nanoparticles strain pulsed laser depositon
  • 相关文献

参考文献29

  • 1Fujii M, Inoue Y, Hayashi S, et al. Hopping conduction in SiO2 films containing C, Si, and Ge clusters [J]. Appl Phys Lett, 1996, 68: 3749-3751.
  • 2Franzo G, Irrera A, Moreira E C, et al. Electroluminescence of silicon nanocrystals in ~IOS structures [J]. Appl Phys A Mater Sci Process, 2002, 74: 1-5.
  • 3Yuan Cailei, Cai H, Lee P S, et al. Tuning photoluminescence of Ge/GeO2 core/shell nanoparticles by strain [J]. J Phys Chem C, 2009, 113: 19863-19866.
  • 4Van T Hoof, Hou M. Structural and thermodynamic properties of Ag-Co nanoclusters [J]. Phys Rev B, 2005, 72:115434.
  • 5Raksha Sharma, Komilla Suri, Tandon R P, et al. Magnetic re- laxation studies in organic-inorganic nanoclusters [J]. J Appl Phys, 2006, 99: 24311.
  • 6Chepulskii R V, Butler W H. Temperature and particle-size de- pendence of the equilibrium order parameter of FePt alloys [J]. Phys Rev B, 2005, 72: 134205.
  • 7Volokitin Y, Sinzig J, DeJongh L J, et al. Quantum-size effects in the thermodynamic prope::ies of metallic nanoparticles [J]. Na- ture, 1996, 384: 621-623.
  • 8Pileni M P. Magnetic fluids: Fabrication, magnetic properties,and organization ofnanocrystals [J]. Adv Funct Mater, 2001, 11: 323-336.
  • 9Diandra L, Leslie-Pelecky, Reuben D. Magnetic properties of nanostructured materials [J]. Chem Mater, 1996, 8: 1770-1783.
  • 10Skomski R. Nanomagnetics [J]. J Phys Condens Matter, 2003, 15: R841.

同被引文献17

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部