摘要
研究了亚纯函数及其k阶导数权分担小函数集的唯一性,得到了:设k,n为正整数,f,g为开平面上超越亚纯函数,以∞为IM公共值,E(S1,f)=E(S1,g)且E1(S2,f(k))=E1(S2,g(k)l(≥2)∈N如果2nδ2+k(an,fn)+(nk+4)Θ(∞,f)>n(k+1)+4则f≡tg(tn=1)或[f(k)n(akn)][(gkn)(akn)]=]bn-(akn])2,并且文中还讨论了当l=0,1时的情形.这些定理推广和改进了先前的一些结果.
The uniqueness of meromorphic functions and their derivatives weakly weighted-sharing the sets of small functions is investigated,and the following theorem is obtained.Let k,n be two positive integers,f,g be nonconstant meromorphic functions in the complex plane C,f,g share ∞ IM,E(S1,f)=E(S1,g) and E1(S2,f(k))=E1(S2,g(k)l(≥2)∈N.If 2nδ2+k(an,fn)+(nk+4)Θ(∞,f)n(k+1)+4 f≡tg(tn=1)= [f(k)n(akn)][(gkn)(akn)]=]bn-(akn])2.Some results about l = 0,1 in the above theorem are obtained in this paper.These theorems of this paper extend and improve the previous results.
出处
《江西师范大学学报(自然科学版)》
CAS
北大核心
2012年第2期141-146,共6页
Journal of Jiangxi Normal University(Natural Science Edition)
基金
福建省教育厅A类科技(JK2010062)
福建省高校科研(JA11276)
宁德师范学院重点课题(2010003)资助项目
关键词
亚纯函数
弱权分担
小函数
唯一性
meromorphic function
weakly weighted-sharing
small function
uniqueness