期刊文献+

计算方法预测microRNA研究进展 被引量:1

A SURVEY ON COMPUTATIONAL APPROACHES TO IDENTIFY MICRORNA
下载PDF
导出
摘要 microRNA(miRNA)是一类内源性、长度为19-24个碱基的非编码小分子RNA。它在调控动植物的基因表达、生长发育等方面起着重要的作用。现阶段寻找miRNA的方法主要分为实验方法和计算预测两大类,其中,实验的方法很难测定表达量偏低或者特异表达的miRNA,也不适合进行基因组范围的发现。而计算预测的方法则恰好可以弥补这些不足。总结近几年计算预测miRNA的方法,归纳为三类,分别是基于同源性比较的方法、基于机器学习的方法和基于高通量测序的方法。最后对miRNA计算预测方法未来的发展方向作出了探讨。 microRNAs(miRNAs) are small non-coding RNAs about 19 to 24 nucleotides in length.They play a key role in gene regulation of animals and plants.Currently,there're mainly two different types of approaches to identify miRNAs,one is experimental,the other is computational.Experimental methods are usually incapable of detecting miRNAs that have low expression levels or are expressed tissue-specifically whereas computational approaches can overcome such disadvantage.The article presents an overview of computational approaches proposed for miRNA identification,which can be grouped into three categories: homology methods,machine learning methods and deep sequencing methods.In the end,the article expresses some opinions about the potential trend of miRNA identification.
出处 《计算机应用与软件》 CSCD 北大核心 2012年第5期159-162,194,共5页 Computer Applications and Software
基金 国家自然科学基金项目(61173118)
关键词 MICRORNA 计算方法预测 同源性比较 机器学习 高通量测序 microRNA Computational identification Homology search Machine learning Deep sequencing
  • 相关文献

参考文献4

  • 1侯妍妍,应晓敏,李伍举.microRNA计算发现方法的研究进展[J].遗传,2008,30(6):687-696. 被引量:13
  • 2Barrel D P. MicroRNAs : genomics, biogenesis, mechanism, and function [J]. Cell,2004,116(2) :281-297.
  • 3Lau N C , Lim L P, Weinstein E G, et al. An abundant class of tiny RNAs with probable regulatory roles in Caenorhabditis elegans [ J ]. Sci- ence ,2001,294 (5543) :858 - 862.
  • 4Hendrix D, Levine M, Shi W. miRTRAP, a computational method for the systematic identification of miRNAs from high throughput sequen- cing data [ J ]. Genome Biology,2010,11 (4) : R39.

二级参考文献4

共引文献12

同被引文献16

  • 1Chen X. Small RNAs and their roles in plant development [J]. Annual Review of Cell and Developmental Biology, 2009, 25( 1 ):21-44.
  • 2Barlel D P. MicroRNAs: genomics, biogenesis, mechanism, and function[ J ]. Cell, 2004, 116( 2 ):281-297.
  • 3Friedlander M R, Chen W, Adamidi C, et al. Discovering microRNAs from deep sequencing data using miRDeep [ J ]. Nat Biotechnol, 2008, 26(4):407-415.
  • 4Friedlander M R, Mackowiak S D, Li N, et al. miRDeep2 accurately identifies known and hundreds of novel microRNA genes in seven animal clades [ J ]. Nucleic AcidsRes, 2012, 40( 1 ):37-52.
  • 5Ahschul S F, Gish W, Miller W, et al. Basic local alignment search tool[J]. J Mol Biol, 1990, 215(3):403-410.
  • 6Mount D W. Using the basic local alignment search tool (BLAST) [ J ]. CSH Protocols, 2007 ( 14 ) : pdb.top 17, doi: 10.1101/pdb .topl7.
  • 7Langmead B, Trapnell C, Pop M, et al. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome [ J ]. Genome Biology, 2009, 10 (3): R25.
  • 8Xu F, Wang X, Feng Y, et al. Identification of conserved and novel microRNAs in the Pacific oyster Crassostrea gigas by deep sequencing[ J ]. PLoS One, 2014, 9 (8):e 104371.
  • 9Li R, Beaudoin F, Ammah A A, et al. Deep sequencing shows microRNA involvement in bovine mammary gland adaptation to diets supplemented with linseed oil or safflower oil[J], snc Genomics, 2015, 16( 1 ):884.
  • 10Fan G, Cao X, Niu S, et al. Transcriptome, microRNA, and degradome analyses of the gene expression of Paulownia with phytoplamsa[J]. BMC Genomics, 2015, 16( 1 ):896.

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部