期刊文献+

透平叶片双工质冷却流量和流向的优化配置 被引量:4

Investigation on Optimal Allocation of Mass Flow and Direction for Binary Cooling Turbine Test Blades
下载PDF
导出
摘要 采用SST转捩模型求解了三维定常雷诺时均Navier-Stokes方程,对具有多个光滑内冷通道的试验叶片进行了气热耦合的数值计算,同时研究了蒸汽、空气冷却工质的流量大小和流向分配对叶片表面温度分布和冷却效率的影响.结果表明:SST转捩湍流模型能够较好地预测叶栅内的传热特性;增加冷却工质的流量,叶片温度明显降低且表面温度分布更加均匀,当冷却工质流量比从0.018 74提高到0.093 71时最大温差下降了约30K,叶片表面的平均冷却效率最大可提升17%,叶片达到最大冷却效果的冷却流量比的最佳值为0.074 97;改变叶片的第2、第4通道的冷却工质流向,可以改善叶片中弦区域沿展向的温度梯度,第5通道采用双向进气的配置方案可以很好地降低叶片尾缘区域的温度梯度,从而改善叶片整体温度的分布. The three-dimensional viscous steady Reynolds-averaged Navier-Stokes equations and energy equation were adopted to solve coupled velocity and temperature fields for investigating the effects of the mass flow rate and the flow direction of cooling-steam and cooling-air on the blade surface temperature distribution and cooling efficiency on the basis of the SST transition turbulence model. The numerical results indicate that the simulation with the SST transition tur- bulence model can predict the heat transfer characteristics in the blade cascade. The blade surface temperature decreases significantly and its temperature distribution is more uniform with an in- crease in the mass flow rates of the coolants. Moreover, when the mass flow rate ratio is in- creased from 0. 018 74 to 0. 093 71, the maximum temperature difference fails by 30 K and the av- erage cooling efficiency of the blade surface rises by up to 17 ~. When the mass flow rate ratio is 0.074 97, the best cooling efficiency of the blade could be obtained in this study. In addition, changing the flow directions of the second and fourth channels can reduce the temperature gradi- ent and effectively improve the temperature distribution in the blade midchord region along span- wise, and adopting the double-inlet configuration in the trailing-edge region will lead to a lower temperature gradient and ameliorate the whole temperature distribution of the blade.
出处 《西安交通大学学报》 EI CAS CSCD 北大核心 2012年第5期7-12,90,共7页 Journal of Xi'an Jiaotong University
基金 国家重点基础研究发展计划资助项目(2007CB707701) 教育部高等学校博士学科点专项科研基金资助项目(20100201120007) 国家自然科学基金资助项目(51106124)
关键词 透平叶片 蒸汽冷却 气热耦合 数值分析 turbine blade steam cooling aero-thermal coupling numerical analysis
  • 相关文献

参考文献10

  • 1翁史烈.燃气轮机 [M].北京:机械工业出版社,1988.
  • 2HAN J C,DUTTA S,EKKAD S.Gas turbine heat transfer and cooling technology [M].London,UK:Taylor & Francis,2000.
  • 3OBATA M,YAMAGA J,TANIGUCHI H.Heat transfer characteristics of a return-flow steam-cooled gas turbine blade [J].Experimental Thermal and Fluid Science,1989,2(3):323-332.
  • 4NOMOTO H,KONGA A,ITO S,et al.The advanced cooling technology for the 1 500 ℃ class gas turbine:steam-cooled vanes and air-cooled blades [J].ASME Journal of Engineering for Gas Turbines and Power,1997,119(3):624-632.
  • 5胡宗军,吴铭岚.采用蒸汽冷却的各种燃气轮机循环性能分析[J].上海交通大学学报,1999,33(3):335-338. 被引量:11
  • 6BOHN D,WOLFF A,WOLFF M,et al.Experimental and numerical investigation of a steam-cooled vane,GT2002-30210 [R].New York,USA:ASME,2001.
  • 7童齐宝,王锁芳.叶片内部蒸汽冷却的数值模拟[J].航空动力学报,2008,23(8):1364-1369. 被引量:6
  • 8霍文浩,祁明旭,李军,丰镇平.超临界汽轮机中压透平级流动传热特性研究[J].西安交通大学学报,2011,45(7):9-14. 被引量:11
  • 9IHOR S,GREG R,GERRY M,et al.Siemens Westinghouse advanced turbine systems program final summary [J].ASME Journal of Engineering for Gas Turbines and Power,2004,126(3):524-530.
  • 10HYLTO L D,MILHEC M S,TURNER E R,et al.Analytical and experimental evaluation of the heat transfer distribution over the surface of turbine vanes,CR168015 [R].Washington DC,USA:NASA,1983.

二级参考文献19

  • 1吕智强,韩万金.超超临界汽轮机蒸汽冷却技术的数值研究[J].哈尔滨工业大学学报,2005,37(12):1703-1704. 被引量:7
  • 2董威,黄维娜.某型发动机涡轮冷却叶片的流动换热耦合计算研究[J].燃气涡轮试验与研究,2006,19(2):14-17. 被引量:3
  • 3KOSMAN W. The influence of cooling flows on the operating conditions of the ultra-supercritical steam turbine components, ASME GT2010-22706 [R]. NewYork,USA: ASME, 2010.
  • 4祁明旭,杨建道,周代伟,等.600MW汽轮机高压漏汽对中压缸转子冷却及动叶根部流动特性的影响[C]∥中国工程热物理学会学术会议.北京:中国工程热物理学会,2010:092071.
  • 5胡宗军,热能动力工程,1998年,13卷,6期,257页
  • 6刘志刚,工程热物理性质计算程序的编制及应用,1992年
  • 7葛绍岩,气膜冷却,1985年
  • 8Wu C S,J Eng Gas Turbines Power,1984年,106卷,4期,750页
  • 9Facchini B, Ferrara G, Innocenti L. Blade cooling improvement for heavy duty gas turbine: the air coolant temperature reduction and the introduction of steam and mixed steam/air cooling[J]. Int. J. Therm. Sci. , 2000,39: 74-84.
  • 10Kruger U, Kusterer K, Lang G. Analysis of the influence of cooling steam conditions on the cooling efficiency of a steam cooled vane using the conjugate calculation technique[R]. ASME Turbo Expo 2001 GT 0166.

共引文献23

同被引文献18

  • 1NOMOTO H,KONGA A,ITO S,et al.The advanced cooling technology for the 1500℃ class gas turbine:steam-cooled vanes and air-cooled blades[J].Journal of Engineering for Gas Turbines and Power,1997,119:624-632.
  • 2FACCHINI B,INNOCENTI L,CARNEVALE E.Evaluation and comparison of different blade cooling solutions to improve cooling efficiency and gas turbine performances[C]// Proceedings of ASME Turbo Expo 2001.New York,USA:ASME,2001:1-10.
  • 3JORDAL K,TORISSON T.Comparison of gas turbine cooling with dry air,humidified air and steam[C]//Proceedings of ASME Turbo Expo 2000.New York,USA:ASME,2000:1-8.
  • 4BOHN D,WOLFF A,WOLFF M,et al.Experimental and numerical investigation of a steam-cooled vane[C]// Proceedings of ASME Turbo Expo 2002:Heat Transfer,Manufacturing Materials and Metallurgy.New York,USA:ASME,2002:477-484.
  • 5WANG Wei,GAO Jianmin,SHI Xiaojun,et al.Experimental study on comparison of cooling effectiveness between steam and air for a gas turbine nozzle guide vane[C]//Proceedings of ASME Turbo Expo 2012.New York,USA:ASME,2012:1-9.
  • 6KLINE S J,MCCLINTOCK F A.Describing uncertainties in single-sample experiments[J].Mechanical Engineering,1953,75:3-8.
  • 7董平,黄洪雁,冯国泰.高压燃气涡轮径向内冷叶片气热耦合的数值分析[J].航空动力学报,2008,23(2):201-207. 被引量:32
  • 8胡捷,刘建军,江友钿.燃气轮机透平叶片气热耦合计算[J].航空动力学报,2011,26(2):349-354. 被引量:11
  • 9邵婧,李杰,吴伟亮.复合冷却涡轮导叶的气热耦合数值模拟[J].科学技术与工程,2014,22(5):292-296. 被引量:7
  • 10马超,黄名海,葛冰,吉雍斌,臧述升.蒸汽/空气两种介质在涡轮叶片中冷却性能对比的试验研究[J].中国电机工程学报,2016,36(6):1650-1657. 被引量:8

引证文献4

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部