期刊文献+

基于改进RBF网络的多变量序列建模和预测 被引量:7

Modeling and Prediction of Multivariate Series Based on an Improved RBF Network
原文传递
导出
摘要 针对复杂系统多变量序列预测研究中数据样本过多、信息冗余等问题,从学习样本选择和聚类中心优化两方面对径向基函数(RBF)网络进行改进.基于复杂系统多变量时间序列,首先采用一个线性相关函数和一个非线性相关函数分别计算多变量状态间的线性相关性和非线性相关性,确定一个包含系统有效信息的小数据集;然后基于小数据集,采用K均值聚类方法确定RBF网络的隐层聚类中心,并引入局部搜索过程,优化聚类中心结果;输入其它训练样本,确定网络权值.仿真结果表明,与常规RBF网络学习方法比较,在隐层节点数目相同情况下,改进的方法有效地确定了网络的聚类中心,达到更好的预测精度. Aiming at some problems in multivariate series prediction of complex systems,such as data samples excess,information redundancy and so on,the radial basis function(RBF) network is improved from two aspects: the learning samples selection and the clustering centers optimization.Based on multivariate time series of complex systems,a linear correlation function and a nonlinear correlation function are used respectively to detect the linear correlations and the nonlinear correlations in the multivariate states firstly.A small data set which includes effective information of the system is defined.Then based on the small data set,K-means clustering algorithm is applied to adjusting hidden layer’s clustering centers of the RBF neural network.A local search procedure is introduced to optimize the clustering centers.Network weights are determined by inputting other training samples.Simulation results show that compared with the learning method based on conventional RBF network,the improved method determines the clustering centers of the network more effectively and gets better prediction accuracy when they have same numbers of hidden layer’s nodes.
出处 《信息与控制》 CSCD 北大核心 2012年第2期159-164,共6页 Information and Control
基金 国家自然科学基金资助项目(60804025) 辽宁省教育厅计划资助项目(2008555)
关键词 径向基函数神经网络 多变量 聚类中心 预测 radial basis function neural network multivariate clustering center prediction
  • 相关文献

参考文献7

二级参考文献57

  • 1王宏伟,马广富.基于模糊模型的混沌时间序列预测[J].物理学报,2004,53(10):3293-3297. 被引量:21
  • 2李军,刘君华.一种新型广义RBF神经网络在混沌时间序列预测中的研究[J].物理学报,2005,54(10):4569-4577. 被引量:32
  • 3于振华,蔡远利.基于在线小波支持向量回归的混沌时间序列预测[J].物理学报,2006,55(4):1659-1665. 被引量:15
  • 4许雷.一种聚类新算法:模拟退火[J].模式识别与人工智能,1989,1:1-16.
  • 5J MacQueen.some methods for classification and analysis of multivariate observations[C].In:Proc 5th Berkeley Symp Math Statist,Prob,1967; 1:281~297
  • 6Z Huang. Extensions to the k-means algorithm for clustering large data sets with categorical values[J].Data Mining and Knowledge Discovery, 1998 ;2:283~304
  • 7Bin Zhang,Gary Kleyner,Meichun Hsu.A Local Search Approach to K-Clustering. Software Technology Laboratory,HP Laboratories Palo Alto, HPL- 1999-119,1999-10
  • 8K Krishma,M N Murty. Genetic K-means Algorithm[J].IEEE Trans on System,Man,and Cybernetics,Part B,1999;29(3):433~439
  • 9G Rudolph.Convergence of Canonical Genetic Algorithm[J].IEEE Trans on Neural Networks,1994;5(1):96~100
  • 10O Martin,S W Otto,E W Felten. Large-Step Markov Chains for the Traveling Salesman Problem[J].Complex Systems, 1991 ;5(3) :299~326

共引文献235

同被引文献71

引证文献7

二级引证文献30

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部