期刊文献+

基于互信息案例推理的氧气脱碳效率预测模型 被引量:3

Prediction Model of Oxygen Decarburization Effciency Based on Mutual Information Case-Based Reasoning
原文传递
导出
摘要 提出基于互信息案例推理的氧气脱碳效率预测模型,并依据预测结果计算转炉炼钢静态和动态阶段吹氧量.首先提出一种新的吹氧量预测方法,将氧气脱碳效率作为案例推理的解属性;然后将互信息引入属性权重的确定过程中,解决了传统案例检索方法忽略问题属性与解属性之间信息量的不足.将所提方法用于一座150t转炉的实际生产数据中,仿真结果表明该模型预测精度较高.该方法能够实现对转炉炼钢吹氧量的准确计算,满足实际生产的要求. A prediction model of oxygen decarburization effciency is proposed based on mutual information case-based reasoning,and the oxygen blowing amounts of static and dynamic phases are calculated according to the forecasting results.A new prediction method of oxygen blowing amount is proposed firstly,which attributes the oxygen decarburization effciency as solution properties of case-based reasoning.Then the mutual information is introduced into the process of determining weights of properties,which solves the problem that the lack of information is ignored between the problem properties and the solution properties in the traditional case retrieval method.The proposed model is applied to the actual production data of a 150 t converter,and the simulation results show that the model has high prediction accuracy.The method can achieve precise calculation of blowing oxygen volume and satisfy the requirement of production.
出处 《信息与控制》 CSCD 北大核心 2012年第2期261-266,272,共7页 Information and Control
基金 国家自然科学基金资助项目(61074096)
关键词 转炉炼钢 案例推理 互信息 氧气脱碳效率 吹氧量 converter steelmaking case-based reasoning mutual information oxygen decarburization effciency blowing oxygen amount
  • 相关文献

参考文献8

二级参考文献17

共引文献78

同被引文献29

  • 1王庆祥.转炉吹氧炼钢去碳过程模型的研究[J].炼钢,1996,12(4):40-43. 被引量:5
  • 2王玉海,宋健,李兴坤.驾驶员意图与行驶环境的统一识别及实时算法[J].机械工程学报,2006,42(4):206-212. 被引量:30
  • 3马南,路来金,张敬莹,张志新.周围神经损伤后神经系统的可塑性[J].中国临床康复,2006,10(22):128-130. 被引量:3
  • 4罗杰文,施智平,何清,史忠植.一种CBR与RBR相结合的快速预案生成系统[J].计算机研究与发展,2007,44(4):660-666. 被引量:23
  • 5Trivedi M M, Gandhi T, McCall J. Looking-in and looking-out of a vehicle: Computer-vision-based enhanced vehicle safety[J]. IEEE Transactions on Intelligent Vehicle-Environment (I-DVE), 2007, 8(1) :108 - 120.
  • 6Sentouh C, Glaser S, Mammar S, et al. Adaptive lane departure and curve negotiation warning system[C]. Proceedings of 8th International Symposium on Advanced Vehicle Control (AVEC06), 2006:312 -326.
  • 7Cheng H, Zheng N, Zhang X, et al. Interactive road situation analysis for driver assistance and safety warning systems: Framework and algorithms[J]. IEEE Transactions on Intelligent Transportation Systems, 2007, 8 (1):157 -166.
  • 8Dagli I, Brost M, Breuel G. Action recognition and prediction for driver assistance systems using dynamic belief networks[ C]. Proceedings of the Conference on Agent Technologies, Infrastructures, Tools, and Applications for E-Serv- ices, 2003 : 179 - 194.
  • 9M Brannstrom, J Sjoberg, E Coelingh. A situation and threat assessment algorithm for a rear-end collision avoidance sys- tem[ C]. Proceedinzs of Intelligent Vehicles Symposium, 2008:102 - 107.
  • 10Iocchi L, Lukasiewicz T, Nardi D, et al. Reasoning about actions with sensing under qualitative and probabilistic uncer- tainty[C]. Proceedings of European Conference on Artificial Inteliigence (ECAI), 2004:230 - 235.

引证文献3

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部