期刊文献+

磁绝缘线振荡器重复频率运行真空系统优化 被引量:3

Optimization of pumping system for repetitively operated magnetically insulated line oscillator
下载PDF
导出
摘要 为改善一种L波段磁绝缘线振荡器(MILO)重复频率运行时的真空环境,建立了器件在分子流下的抽气模型,采用Monte-Carlo方法对阴极脉冲放气后的瞬态抽气过程进行了模拟计算,获得了不同时刻气体分子在MILO内部的3维分布情况,并据此提出了一种"分布式"抽气方案,即在MILO靠近气源的微波传输区增加一抽气单元,以缩短脉冲间隔内的抽气时间。在Torch-01调制器上开展了MILO"分布式"抽气的实验验证,结果显示,"分布式"抽气时的气压下降特征时间为单泵的0.22倍,与模拟结果基本一致;初步的重复频率测试也表明"分布式"抽气能够缩短脉冲串间隔内的抽气时间以保持器件运行时的真空水平。在所给实验条件下,从真空的角度,"分布式"抽气能够使MILO有效运行的重复频率数提升至单泵抽气时的5倍。 To improve the vacuum environment of an L-band,giga watt-level magnetically insulated line oscillator(MILO),an optimized pumping model was developed for the molecular movement and collision in the high-current vacuum diode chamber and the MILO tube with Monte-Carlo method.According to the three dimensional molecular distributions in MILO,a scheme of distributed pumping was proposed.In this scheme,another pump system which was close to the velvet cathode was introduced and located between the slow wave structure and antenna.Simulation predictions were verified through the experimental test carried out on Torch-01 pulser.Distributed pumping can efficiently reduce the characteristic time of pressure drop to 0.22 times that of single pumping.Moreover,at repetitive operation of MILO,distributed pumping maintains the vacuum degree in MILO better,and for our experimental condition,it can improve the MILO's repetition rate by 5 times.
出处 《强激光与粒子束》 EI CAS CSCD 北大核心 2012年第4期1003-1008,共6页 High Power Laser and Particle Beams
基金 国家高技术发展计划项目
关键词 磁绝缘线振荡器 脉冲放气 MONTE-CARLO模拟 瞬态抽气 重复频率运行 magnetically insulated line oscillator(MILO) pulse desorption Monte-Carlo simulation transient pumping repetitive operation
  • 相关文献

参考文献16

  • 1Benford J, Swegle J A, Schamilogulu E, et al.High power microwaves[M].2nd ed.New York: Taylor and Francis Group, 2007.
  • 2Gold S H, Nusinovich G S.Review of high-power microwave source research[J].Rev Sci Instrum, 1997, 68(11):3945-3951.
  • 3Fan Y W, Zhong H H, Li Z Q, et al.Repetition rate operation of an improved magnetically insulated transmission line oscillator[J].Phys Plasmas, 2008,15(8):3102-3107.
  • 4Miller R B.Mechanism of explosive electron emission for dielectric fiber (velvet) cathodes[J].J Appl Phys, 1998, 84(7):3880-3889.
  • 5Krasik Ya E, Gleizer J Z, Yarmolich D, et al.Characterization of the plasma on dielectric fiber (velvet) cathode[J].J Appl Phys, 2005, 98(9):3308-3315.
  • 6Forrest J A.Evolution of pulse shortening research in narrow band, high power microwave sources[J].IEEE Trans on Plasma Sci, 1998, 26(3):235-245.
  • 7Xun Tao, Zhang Jiande, Yang Hanwu, et al.Characteristics of a velvet cathode under high repetition rate pulse operation[J].Phys Plasmas, 2009, 16(10):3106-3312.
  • 8Shiffler D, Haworth M, Cartwright K, et al.Review of cold cathode research at the Air Force Research Laboratory[J].IEEE Trans on Plasma Sci, 2008, 36(3):718-728.
  • 9Caliso S E, Clark M C, Scott M C.Experimental results of a high power rep-rate velvet cathode[C]//10th IEEE International Pulsed Power Conference.1995:677-681.
  • 10Melin G.Dynamic pumping and pulsed outgassing in waveguides and vacuum systems for plasma physics experiments[J].J Vac Sci Technol A, 1987, 5(5):2945-2953.

二级参考文献13

  • 1Mesyats G A, Korovin S D, Gunin A V, et al. Repetitively pulsed high-current accelerators with transformer charging of forming lines[J]. Laser and Particle Beams, 2003, 21 : 197-209.
  • 2Barker R J, Schamiloglu E. High power microwave source and technologies[M], Wiley: IEEE Press, 2001.
  • 3Miller R B. Mechanism of explosive electron emission for dielectric fiber (velvet) cathodes[J], d Appl Phys, 1998, 84(7):3880-3890.
  • 4Fan Yuwei, Zhong Huihuang, Li Zhiqiang, et al. Recent progress of improved magnetically insulated transmission line oscillator[J]. RevSci Instrum, 2008, 79(3) :4703-4707.
  • 5Xun Tao, Zhang Jiande, Yang Hanwu, et al. Characteristics of a velvet cathode under high repetition rate pulse operation[J]. Phys Plasmas, 2009, 16(10):3106-3111.
  • 6Miller R B. Pulse shortening in high-peak-power Reltron tubes[J]. IEEE Trans Plasma Sci, 1998, 26(3):340-347.
  • 7Agee F J. Evolution of pulse shortening research in narrow band, high power microwave source[J]. IEEE Trans Plasma Sci, 1998, 26(3) :235-245.
  • 8Shiffler D, Ruebush M, Haworth M, et al. Carbon velvet field-emission cathode[J]. Rev Sci Instrum, 2002, 75(12):4358-4363.
  • 9Dunaevsky A, Krasik Ya E, Felsteiner J, et al. Electron diode with a large area ferroelectric plasma cathode[J].J Appl Phys, 2001, 90 (8) :3689-3699.
  • 10Gunin A V, Landl V F, Korovin S D, et al. Experimental studies of long-lifetime cold cathodes for high-power microwave oscillator[J].IEEE Trans Plasma Sci, 2000, 28(3) :537-541.

同被引文献25

  • 1张永辉,常安碧,康强,罗敏,龚胜刚,李名加,李正红,马乔生,向飞,赵殿林,甘延青,刘忠.重复脉冲强流电子束源长时间稳定运行实验研究[J].强激光与粒子束,2005,17(5):751-755. 被引量:10
  • 2孙会芳,董志伟.磁绝缘线振荡器的冷腔研究[J].信息与电子工程,2006,4(1):35-39. 被引量:3
  • 3梁宇宏,陈星.天线自动设计和“天基”系统[J].信息与电子工程,2006,4(6):454-456. 被引量:4
  • 4Arman M J,Havranek J,Dietz D. Self-optimization in simulation-aided high power microwave source design[R].PL-TR-97-1009,1997.
  • 5王小平;曹立明.遗传算法-理论:应用与软件实现[M]西安:西安交通大学出版社,2002.
  • 6王建成;田沛.基于GA的电磁参数提取时域仿真研究[A],2006115-117.
  • 7Benford J,Swegle J A,Schamilogulu E. High power microwaves[M].New York:Taylor & Francis Group,2007.
  • 8Miller H C. Flashover of insulators in vacuum:Review of the phenomena and techniques to improve holdoff voltage[J].IEEE Transactions on Electrical Insulation,1993,(04):512-527.
  • 9Gaudet J A,Barker R J,Buchenauer C J. Research issue in developing compact pulsed power for high peak power applications on mobile platforms[J].PROCEEDINGS OF THE IEEE,2004,(07):1144-1161.
  • 10Xun T,Yang H W,Zhang J D. A ceramic radial insulation structure for a high current REB vacuum diode[J].Review of Scientific Instruments,2008,(06):3303-3309.

引证文献3

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部