期刊文献+

具有非局部初始条件半线性中立型随机演化方程的能控性(英文)

Controllability of Semilinear Neutral Stochastic Evolution Equations With Nonlocal Initial Conditions
下载PDF
导出
摘要 讨论了一类具有非局部初始条件半线性中立型随机演化方程的能控性.通过Sadovskii不动点原理得到了其能控性的充分条件,结论是在算子半群不具有紧性条件下所得到的.作为应用,文章给出了一类具有非局部条件的一类中立型随机偏微分方程的能控性. This paper deals with the controllability of a class of semilinear neurtral stochastic evolution equation with nonlocal initial conditions.Sufficient conditions for the controllability are derived by means of the Sadovskii fixed point theorem.Especially,the compactness of the operator semigroups is not needed in this article.An application to the controllability of the neutral stochastic partial differential equations with nonlocal initial values is given to illustrate the theory.
作者 何世峰
出处 《安徽师范大学学报(自然科学版)》 CAS 北大核心 2012年第2期107-114,共8页 Journal of Anhui Normal University(Natural Science)
关键词 能控性 随机演化方程 非局部初始条件 适度解 controllability stochastic evolution equation nonlocal initial condition mild solution
  • 相关文献

参考文献20

  • 1BALASUBRAMANIAM P, PARK Y, VINCENT Antony Kumara A. Existence of solutions for semilinear neutral stochastic functional differential equations with nonlocal conditions[J]. Nonlinear Anal, 2009,71 : 1049 - 1058.
  • 2BALASUBRAMANIAM P, NTOIdYAS S K. Controllability for neutral stochastic functional differential inclusions with infinite delay in abstract spaceEJ]. J Math Anal Appl, 2006,324:161 - 176.
  • 3BALACHANDRAN K, KIM J H. Remarks on the paper"Controllability of second order differential inclusion in Banach spaces" [J]. J Math Anal Appl, 2006,324 : 746 - 749.
  • 4BALACHANDRAN K, DAUER J P. Gantmllability of nonlinear systems in Banach spaces= a survey[J ]. J Optim Theory Appl, 2002,115 : 7 -28.
  • 5BYSZEWSKI L. Theorems about the existence and uniqueness of a solution of a semilinear evolution ngnlocal Cauchy problem[J]. J Math Anal Appl, 1991,1622:496 - 505.
  • 6BYSZEWSKI L, AKCA H. On a mild solution of a semilinear functional-differential evolution nonlocal problem[J]. J Appl Math Stoch Anal, 1997,10.'265 - 271.
  • 7CARUNUCGEK Bm QYUBB N D. Fixed point methods in nonlinear control. Lecture Notes in Control and Information Society[M]. Berlin: Springer, 1984.
  • 8CHANG Y, LI W. Controllability of functional integro-differential inclusions with an unbounded delay[J]. J Optim Theory Appl, 2007,132: 125 - 142.
  • 9CHANG Y, NIETO J, LI W. Controllability of sernilinear differential systems with nonlocal initial conditions in Banach spaces[J]. J Optim Theory Appl, 2009,142 ~ 267 - 273.
  • 10DA Prato G, ZABCZYK J. Stochastic equations in infinite dimensions[M]. Cambridge: Cambridge University Press, 1992.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部