期刊文献+

并网风力机中基于变桨距角的神经网络控制方法 被引量:1

Neural Network Control for Variable Pitch Angle in Grid Connected Wind Turbine
下载PDF
导出
摘要 针对并网风力机的运行特性,在其传动系统和发电机的动态模型基础上设计控制器.当外界风速较大,提出采用基于神经网络的风力机叶片桨距角控制器抑制多余的风能进入发电系统,维持风力发电机馈送到电网的功率稳定;当风速较低时,风力机转速需要跟随风速变化,调整叶片桨距角处于捕捉最大风能位置处,保证风力机的风能转换效率最优,提高其运行效率.仿真结果验证了该控制方法的有效性. For the operation characteristics of a grid connected wind turbine,two controllers are designed based on the dynamical model of the wind turbine drive system and generator.When the wind speed is higher,the neural network controller of the turbine blades pitch angle is proposed to restrict the excess wind energy entering the generation system in order to keep the power injected into the grid stable.Meanwhile,when the wind speed is lower,the turbine speed is changed with the variation of wind speed by adjusting the blades angle at the value of capturing maximum wind power,then the optimal wind energy conversion efficiency is guaranteed.The simulation results verify this control method is highly effective.
出处 《三峡大学学报(自然科学版)》 CAS 2012年第2期45-49,共5页 Journal of China Three Gorges University:Natural Sciences
基金 宜昌市科学技术研究与开发项目(A2011-302-9) 三峡大学人才科研启动基金项目(KJ2010B032)
关键词 风力机 桨距角控制 功率系数 神经网络 并网 wind turbine pitch angle control power coefficient neural network grid connection
  • 相关文献

参考文献9

  • 1Papathanassiou S A, Papadopoulos M P. Dynamic Characteristics of Autonomous Wind-diesel Systems [J]. Renewable Energy, 2001, 23(2): 293-311.
  • 2Holley W E. Wind turbine Dynamics and Control-issues and Challenges[J]. Proceedings of the American Control Conference, 2003, 5, 3794-3795.
  • 3Muljadi E. Pitch-controlled Variable Speed Wind Tur- bine Generation[J]. IEEE Transactions on Industry Ap- plications, 2001, 37(1): 240-246.
  • 4Chen Z, Gomez S, Mccormick M. Fuzzy Logic Con- trolled Power Electronic System for Variable Speed Wind Energy Conversion Systems [J].Proceedings of 8th International Conference on Power Electronics and Variable Speed Drives, 2000, 475, 114-119.
  • 5Yang J, Wu J, Yang J M, et al. Apply Intelligent Con trol Strategy in Wind Energy Conversion System[J]. Proceedings of the World Congress on Intelligent Con trol and Automation, 2004, 6, 5120-5124.
  • 6Moor G D, Beukes H J. Maximum Power Point Track- ers for Wind Turbines[J]. PESC Record - IEEE Annual Power Electronics Specialists Conference, 2004, 3, 2044-2049.
  • 7Wang Q, Chang L. An Intelligent Maximum Power Ex- traction Algorithm for Inverter-based Variable Speed Wind Turbine Systems[J]. IEEE Transactions on Pow- er Electronics, 2004, 19(5): 1242-1249.
  • 8肖永山,王维庆,霍晓萍.基于神经网络的风电场风速时间序列预测研究[J].节能技术,2007,25(2):106-108. 被引量:68
  • 9范高锋,王伟胜,刘纯.基于人工神经网络的风电功率短期预测系统[J].电网技术,2008,32(22):72-76. 被引量:122

二级参考文献24

  • 1杨秀媛,肖洋,陈树勇.风电场风速和发电功率预测研究[J].中国电机工程学报,2005,25(11):1-5. 被引量:584
  • 2吴国旸,肖洋,翁莎莎.风电场短期风速预测探讨[J].吉林电力,2005,33(6):21-24. 被引量:71
  • 3肖永山,王维庆,霍晓萍.基于神经网络的风电场风速时间序列预测研究[J].节能技术,2007,25(2):106-108. 被引量:68
  • 4World Wind Energy Association. Wind turbines generate more than 1% of the global electricity[EB/OL]. (2008-02-21)[2008- 03-20]. http: //www.wwindea.org.
  • 5Landberg L, Watson S J. Short-term prediction of local wind conditions[J]. Bounddary-Layer Meteorology, 1994, 70(1): 171-195.
  • 6Landberg L. Prediktor: an on-line prediction system[C]. Wind Power for the 21 st Century, EUWEC Special Topic Conference, Kassel, 2000.
  • 7Nielsen T S. Madsen H. WPPT: a tool for wind power prediction[C]. EWEA Special Topic Conference, Kassel, 2000.
  • 8Giebel G, Landberg L, Joensen Alfred K, et al. The zephyr-project: the next generation prediction systemiC]. Procedings of Wind Power for the 21st Century, Kassel, Germany, 2000.
  • 9Lange M, Focken U, Heinemann D. Previento-regional wind power prediction with risk control[C]. Proceedings of the World Wind Energy Conference, Berlin, 2002.
  • 10Lange B, Rohrig K, Ernst B, et al. Wind power prediction in Germany: recent advances and future challenges[C]. European Wind Energy Conference, Athens; 2006.

共引文献182

同被引文献8

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部