期刊文献+

器件老化处理对有机发光磁效应的影响 被引量:1

Influence of aging treatment on magneto-electroluminescence in organic light emitting diodes
原文传递
导出
摘要 制备了基于小分子tris-(8-hydroxyquinoline)aluminum(III)(Alq3)的有机发光二极管,并在室温下对器件进行大电流老化处理;然后测量了器件的光电性能,以及电致发光磁效应(magneto-electroluminescence,MEL)随老化时间的变化关系.实验结果显示,经老化处理后,器件的发光效率降低、工作电压增大;但器件的MEL随老化时间则表现出先增加、后减小的特点,且其线型保持不变.基于器件光电性能退化的主要机制,分析了器件MEL发生非单调变化的可能原因,即器件中形成了对发光激子有淬灭作用的Alq3阳离子,该阳离子引起发光强度的减弱造成MEL在短时间处理后增加,而阴极/Alq3界面的退化导致发光层中电场的增大则引起器件MEL的减小.这对理解有机发光的退化机制和有机磁效应的形成机制具有较好的促进作用. We investigated the influence of electric stress condition on organic magneto-electroluminescence(MEL) in tri-(8-hydroxyquinoline)aluminum(Alq3)-based organic light-emitting diodes.The results show that the performance of the devices goes to bad as increasing the aging time;in particular,the threshold voltage becomes larger and the luminescence efficiency gets lower.Moreover,the magnitude of the MEL increases firstly and then gets smaller with the line shape unchanged as the device aging.Possible explanations for the above effects were proposed based on the mechanism of the device aging.We suggested that the quencher,Alq3 cation-radicals,which formed in the emitting layer,reduce the EL intensity and enhance the magnitude of MEL.In addition,the increase in turn-on voltage and the decrease in MEL are assigned to the degradation at the interface of Al/Alq3.
出处 《科学通报》 EI CAS CSCD 北大核心 2012年第13期1100-1105,共6页 Chinese Science Bulletin
基金 重庆市科委自然科学基金(2010BA6002) 复旦大学应用表面物理国家重点实验室开放课题(KL2011_06) 国家自然科学基金(10974157) 中央高校基本科研业务费专项资金(XDJK2009A001 XDJK2011C041)资助
关键词 老化处理 有机磁效应 Alq3阳离子 界面退化 aging treatment organic magneto-electroluminescence Alq3 cation interface degradation
  • 相关文献

参考文献14

  • 1Kalinowski J, Cocchi M, Virgili D P, et al. Magnetic field effects on emission and current in Alq3-based lectroluminescent diodes. Chem Phys Lett, 2003, 380:710-715.
  • 2Davis A H, Bussmann K. Large magnetic field effects in organic light emitting diodes based on tris(8-hydroxyquinoline aluminum) (Alq3)/N,N'-Di(naphthalene- 1-yl)-N,N'-diphenyl-benzidine (NPB) bilayers. J Vac Sci Tech A, 2004, 22:1885-1891.
  • 3Hu B, Yan L, Shao M. Magnetic field effect in organic semiconducting materials and devices. Adv Mater, 2009, 21:1500-1516.
  • 4Lei Y L, Zhang Y, Liu R, et al. Driving current and temperature dependent magnetic-field modulated electroluminescence in Alq3-based organic light emitting diode. Org Electron, 2009, 10:889-894.
  • 5Zhang Q M, Lei Y L, Xiong Z H, et al. Positive and negative components of magneto-conductance in hole transport limited organic light-emitting diodes. Appl Phys Lett, 2011, 98:243303.
  • 6Chen P, Lei Y L, Xiong Z H, et al. Magnetoelectroluminescence in tris-(8-hydroxyquinoline) aluminum (Ⅲ)-based organic light-emitting diodes doped with fluorescent dyes. Appl Phys Lett, 2009, 95:213304.
  • 7张巧明,陈平,雷衍连,等.非平衡注入对掺杂型有机发光二极管中磁电导效应的影响.中国科学:物理学力学天文学,2010,40:1507-1513.
  • 8Francis T L, Mermer O, Veeraraghavan G, et al. Lagre magnetoresistance at room temperature in semiconducting polymer sandwich de- vices. New J Phys, 2004, 6:185.
  • 9Franky S, Denis K. Degradation mechanisms in small-molecule and polymer organic light-emitting diodes. Adv Mater, 2010, 22: 3762-3777.
  • 10Aziz H, Popovic Z D, Hu N X, et al. Degradation mechanism of small molecule-based organic light-emitting devices. Science, 1999, 283: 1900-1902.

同被引文献46

  • 1Flamigni L, Barbieri A, Sabatini C, et al. Photochemistry and photophysics of coordination compounds: Iridium. Top Curr Chem, 2007, 281:143-203.
  • 2Chou P T, Chi Y, Chung M W, et al. Harvesting luminescence via harnessing the photophysical properties of transition metal complexes. Coord Chem Rev, 2011,255:2653-2665.
  • 3You Y, Nam W. Photofunctional triplet excited states of cyclometalated Ir(III) complexes: Beyond electroluminescence. Chem Soc Rev, 2012, 41:7061-7084.
  • 4Xiang H F, Cheng J H, Ma X F, et al. Near-infrared phosphorescence: Materials and applications. Chem Soc Rev, 2013, 42:6128-6185.
  • 5Kumar R V, Nishiura M, Takimoto M, et al. Bis-cyclometalated iridium(III) complexes bearing ancillary guanidinate ligands. Synthesis, structure, and highly efficient electroluminescence. Inorg Chem, 2012, 51:822-835.
  • 6Dai J, Zhou K F, Li M, et al. Iridium(Ill) complexes with enhanced film amorphism as guests for efficient orange solution-processed single- layer pholeds with low efficiency roll-off. Dalton Trans, 2013, 42:10559-10571.
  • 7Shan G G, Li H B, Su Z M. Enhancing the luminescence properties and stability of cationic iridium(III) complexes based on phenylben- zoimidazole ligand: A combined experimental and theoretical study. Dalton Trans, 2013, 42:11056-11065.
  • 8Shan G G, Li H B, Su Z M. Controllable synthesis of iridium(III)-based aggregation-induced emission and/or piezochromic luminescence phosphors by simply adjusting the substitution on ancillary ligands. J Mater Chem C, 2013, 1:1440-1449.
  • 9Zhao N, Wu Y H, Chen Z N, et al. Aggregation-induced phosphorescence of iridium(HI) complexes with 2,2-bipyridine-acylhydrazone and their highly selective recognition to Cu2. Analyst, 2013, 138:894-900.
  • 10Zhang Y M, Wu S H, Zhong Y W, et al. A bis(terpyridine)ruthenium complex with three redox-active amine sites: Electrochemical, opti- cal, and computational studies. Inorg Chem, 2012, 51:11387-11395.

二级引证文献1

  • 1陈忠宁.编者按[J].科学通报,2014,59(17):1581-1581.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部