摘要
移动最小二乘近似具有计算稳定,全局相容,求解精度高的特性。采用最小势能原理推导了Winkler地基梁的无网格伽辽金离散系统方程,使用Lagerange乘子法对离散系统方程施加本质边界条件。算例表明:使用无网格伽辽金法处理弹性地基梁问题,具有精度高和易于实现的优点。
The shape function of the moving least-square (MLS) approximants is stability and continuity on global domain,and the solution has the characteristics of high precision.The discretized system equation for beam on Winkler elastic foundation was derived by using the minimum potential energy principle.The essential boundary condition was employed by Lagrange multipliers.Example shows that the element free Galerkin is easy to implement,and very versatile for the analysis of beam on Winkler elastic foundation.
出处
《河南科技大学学报(自然科学版)》
CAS
北大核心
2012年第3期36-38,41,共4页
Journal of Henan University of Science And Technology:Natural Science
基金
国家自然科学基金项目(50774081)
关键词
WINKLER地基
无网格伽辽金法
移动最小二乘近似
梁
拉格朗日乘子
Winkler elastic foundtion
Meshless element free Galerkin method
Moving least-square approximants
Beam
Lagrange multipliers