期刊文献+

基于反向学习的自组织迁移算法 被引量:4

Opposition-based Self-organizing Migrating Algorithm
下载PDF
导出
摘要 为了解决自组织迁移算法存在的早期收敛问题,提出了基于反向学习的自组织迁移算法(Opposition-basedSelf-organizing Migrating Algorithm,OSOMA)。该算法利用反向学习机制扩展了个体的搜索方向,获得了更优秀的采样个体,使得算法在保持多样性的同时提高了收敛速度。此外,该算法还对步长进行自适应调整,进一步平衡了算法的勘探和开采能力。通过典型函数的测试证实了OSOMA的有效性。 A new opposition-based self-organizing migrating algorithm(OSOMA) was proposed to deal with premature convergence of self-organizing migrating algorithm.The key points of OSOMA lie in:1) the opposition-based learning is applied to extend the migrating direction and obtain better individual,which maintains diversity of population and improves the convergence speed.2) the algorithm adaptively adjusts the step to further balance between the ability of exploration and exploitation capacity.Then,OSOMA is used to solve typical problems and numerical results show the effectiveness of OSOMA.
出处 《计算机科学》 CSCD 北大核心 2012年第5期217-218,233,共3页 Computer Science
基金 国家自然科学基金项目(60773009) 广东工业大学校博士基金(093058)资助
关键词 自组织迁移算法 反向学习 OSOMA Self-organizing migrating algorithm Opposition-based learning OSOMA
  • 相关文献

参考文献7

  • 1Ivan Z,Jouni L. SOMA Self-organizing Migrating Algorithm[C]//6th International Conference on Soft Computing. Brno, Czech Republic, 2000.
  • 2林志毅,李元香,王玲玲.基于混合迁移行为的自组织迁移算法[J].计算机科学,2008,35(12):175-177. 被引量:6
  • 3dos Santos Coelho L. Self-organizing Migrating Strategies Applied to Reliability-Redundancy Optimization of Systems [J]. IEEE Transactions on Reliability, 2009,58(3):501-510.
  • 4柯晶,李歧强,乔谊正.采用随机变异步长的改进自组织迁移算法[J].计算机工程与应用,2006,42(35):41-44. 被引量:4
  • 5Tizhoosh H R. Opposition-based Learning: A New Scheme for Machine Intelligence[C]//Proceedings of International Conference on Computational Intelligence for Modelling Control and Automation. Vienna, Austria, 2005 : 695-701.
  • 6Tizhoosh H R. Opposition-based reinforcement learning [J]. Journal of Advanced Computational Intelligence and Intelligent Informatics, 2006,30(3) : 578-585.
  • 7李勇,刘建昌,王昱.基于对位学习的多目标遗传算法[J].系统仿真学报,2009,21(24):7801-7804. 被引量:3

二级参考文献27

  • 1柯晶,李歧强,乔谊正.采用随机变异步长的改进自组织迁移算法[J].计算机工程与应用,2006,42(35):41-44. 被引量:4
  • 2Ivan Z,Jouni L. SOMA-Self-Organizing Migrating Algorithmff Mendel, 6th International Conference on Soft Computing. Brno, Czech Republic, 2000
  • 3Clerc M, Kennedy J. The particle swarm-explosion, stability, and convergence in a multidimensional complex space [J]. IEEE Trans on Evolutionary Computation, 2002,6 (1) : 58-73
  • 4Dorigo M, Maniezzo V, Colorni A. Ant system:optimization by a colony of cooperating agents. IEEE Transaction on Systems. Man and Cybernetics-PartB, 1996,26 (1) : 29-41
  • 5Cervenka M, Ivan Z. Parallel computation for SOMA[R]//Proceeding 19^th European Conference on Modeling and Simulation. Riga, Latvia, 2005
  • 6Zelinka I. SOMA-Self-organizing migrating algorithm[M]. New Optimization Techniques in Engineering. Berlin: Springer, 2004: 167-217
  • 7Oplatkova Z, Zelinka I. Investigation On Shannon-Kotelnik Theorem Impaet On Soma Algorithm Performance [A] // Proceedings 19th European Conference on Modelling and Simulation. Yuri Merkuryev, Richard zobel, Eugene Kerekhoffs. ECMS [c],2oo5
  • 8Eberhart R C, Shi Y H. Evolving Artificial Neural Networks[R]//Proceedings of Int'l Conference on Neural Networks and Brain. Beijing, 1998
  • 9Kalyanmoy Deb, Amrit Pratap, Sameer Agarwal, T Meyarivan. A Fast Elitist Multiobjective Genetic Algorithm: NSGA-II [J]. IEEE Transactions on Evolutionary Computation (S1089-778X), 2002, 6(2): 182-197.
  • 10Elias G Bekele, John W Nicklow. Multi-objective automatic calibration of SWAT using NSGA-II [J]. Journal of Hydrology (S0022-1694), 2007, 341 (3-4): 165-176.

共引文献8

同被引文献26

  • 1许耀华,胡艳军,张媛媛.基于离散粒子群算法的CDMA多用户检测方法[J].通信学报,2005,26(7):109-113. 被引量:11
  • 2王兴伟,王军伟,吴铁艳,黄敏.NGI中一种基于粒子群优化的QoS单播路由算法[J].东北大学学报(自然科学版),2006,27(1):21-24. 被引量:7
  • 3田菁,郑彦兴,窦文华.基于不精确信息的Pareto最优路径搜索[J].通信学报,2007,28(3):68-77. 被引量:3
  • 4Zhou Aimin, Ou Bo-yang, Li Hui, et al. Multiobjective evolutionary algorithms: Asurvey of the state of the art[J]. Swarm and Evolutionary Computation, 2011, 1(1): 32-49.
  • 5Kalyanmoy Deb, Amrit Pratap, Sameer Agarwal, et al. A fast and elitist multiobjective genetic algorithm: NSGA-II[J]. IEEE Trans on Evolutionary Computation, 2002, 6(2):182-197.
  • 6Kalyanmoy Deb, Manikanth Mohan, Shikhar Mishra. Towards a quick computation of well-spread pareto-optimal solutions[C]. The 2nd Int Conf Evolutionary Multi-Criterion Optimization. Faro: Springer, 2003: 222-236.
  • 7Raquel C R, Naval P C, An effective use of crowding distance in multiobjective particle swarm optimization[C]. Proc of Genetic and Evolutionary Computation Conf. Washington DC: ACM Press, 2005: 257-264.
  • 8Bandyopadhyay S, Saha S, Maulik U, et al. A simulated annealing-based multiobjective optimization algorithm: AMOSA[J]. IEEE Trans on Evolutionary Computation, 2008, 12(3): 269-283.
  • 9Laumanns M, Thiele L, Deb K, et al. Combining convergence and diversity in evolutionary multiobjective optimization[J]. Evolutionary Computation, 2002, 10(3): 263-282.
  • 10Zelinka I, Lampinen J. SOMA-self-organizing migrating algorithm[C]. Proc of the 6th Int Conf on Soft Computing. Brno: Technical University Press, 2000: 177-187.

引证文献4

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部