期刊文献+

多目标优化免疫算法中核心算子抽象

Abstract of Core Operators of Multi-objective Optimizations Immune Algorithms
下载PDF
导出
摘要 人工免疫系统是受自然免疫原理启发而建立的计算模型,多目标优化问题是当前演化计算的一个重要研究方向。然而,当前的各种免疫优化算法的运行机制和操作过程均不相同。提出一种多目标优化免疫算法的统一表达方法,抽象出免疫算法的3类核心算子的主要原理和运行过程。核心算子可表达经典免疫优化算法NNIA和CMOIA,证明了3类免疫算子表达算法的可行性和高效性。 Artificial immune system is the computing system based on the theory of natural immune,and the multi-objective optimization is an important researching direction in optimizing field.The study found that all kinds of immune algorithms' operational principles and process are not same.This paper presented a method that can unify the expression of the multi-objective optimization immune algorithm,and Abstracted the main principle and operational process of three kinds core operators of the immune algorithm.This core operator can express classic immune algorithms NNIA and CMOIA.It is proved that this three immune operators are feasible and efficient to express algorithms.
出处 《计算机科学》 CSCD 北大核心 2012年第5期219-222,242,共5页 Computer Science
关键词 多目标优化 人工免疫系统 免疫算子 Multi-objective optimization Artificial immune system Immune operator
  • 相关文献

参考文献15

  • 1Deb K. Multi-Objective Optimization Using Evolutionary Algo rithms [M]//Wiley John & Sons. Ltd UK,2001.
  • 2Pareto V. Course Economic Politique [M]. Lausanne: Rouge, Vol. Ⅰ and Ⅱ,1896.
  • 3Jon T,Mark N,John H. An artificial immune System for data analysis [J]. Biosystems,2000,55(1-3) : 143-150.
  • 4Akio I, Ichikawa S,Uchikawa Y. A gait acquisition of a 6-legged robot using immune networks [C]//Proceedings of the IEEE/ RSJ/GI international conference on Intelligent robots and Systems. Munich,Germany, 1994,2:1024-1041.
  • 5Branco P J C,Dente J A,Mendes R V. Using Immunology Principles for Fault Detection [J]. IEEE Transactions on Industrial Electronics, 2003,50 (2) : 362-372.
  • 6Dasgupta D. Artificial neural networks and Artificial immune system: similarities and differences [C]//Proceedings of IEEE International Conference on Systems. Orlando, FL, USA. Oct 1997,1 : 873-878.
  • 7Jiao Li-cheng, Du Hai-feng, Gong Mgao-guo, et al. Immunological Computation for Optimization, Learning and Recognition [M]. Beijing: Science Press, 2006.
  • 8de Castro L N,von Zuben F J. Learning and optimization Using the Clonal Selection Principle [J]. IEEE Transactions on Evolutionary Computation, Special Issue on Artificial Immune Systems,2002,6(3) :239-251.
  • 9尚荣华,焦李成,马文萍.免疫克隆多目标优化算法求解约束优化问题[J].软件学报,2008,19(11):2943-2956. 被引量:17
  • 10Gong Mao-guo, Jiao Li-eheng, Du Hai-feng, et al. Multi-objective immune algorithm with non dominated neighbor-based selection [J]. Evolutionary Computation, 2008,16(2) :225-255.

二级参考文献3

共引文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部