期刊文献+

一种改进的基于NMF的人脸识别方法 被引量:8

Improved Face Recognition Method Based on NMF
下载PDF
导出
摘要 针对NMF(非负矩阵分解)算法基于局部特征提取的特点,提出了一种对NMF基矩阵的处理方法,以提高在局部遮挡环境下人脸识别系统的识别率。首先使用离散小波变换得到样本的低频信息,利用NMF得到基矩阵;然后通过阈值判断提取能够突出表现人脸特征的部分,得到优化后的特征子空间,并将样本在该子空间上投影;最后使用支持向量机对所得到的投影系数分类。实验结果表明,优化算法其运算时间较短,且能有效地提高人脸在部分遮挡环境中的识别率。 Non-negative matrix factorization(NMF) is a method of parts-based feature extraction,according to this characteristic.An improved algorithm dealing with NMF basis was introduced to enhance partial occlusion face recognition rate.Firstly,discrete wavelet transformation was used to produce a representation in the low frequency domain,and basic matrix was got according to the NMF method.Secondly,parts of face features which possess outstanding perfor-mance were extracted by threshold value judgments,and they were used to form optimized facial subspace feature.The training and testing images were projected to the optimized subspace feature.Finally support vector machine was used for classification.Experiments show that the improved algorithm's computing time is short,and this method achieves remarkable effects under the partially occluded circumstance.
出处 《计算机科学》 CSCD 北大核心 2012年第5期243-245,270,共4页 Computer Science
基金 国家自然科学基金(61170126) 江苏省自然科学基金(BK2009199 BK2010339)资助
关键词 非负矩阵分解 离散小波变换 人脸识别 基矩阵 NMF DWT Face recognition Basic matrix
  • 相关文献

参考文献8

  • 1Zafeiriou S, Petrou M. Nonlinear Nonnegative Component Analysis[C]//IEEE Conference on Computer Vision and Pattern Ree ognition. 2009 : 2860-2865.
  • 2Lee D D,Seung H S. Learning the parts of objects by non-negative matrix factorization[J]. Nature, 1999,401 (6755) : 788-791.
  • 3刘维湘,郑南宁,游屈波.非负矩阵分解及其在模式识别中的应用[J].科学通报,2006,51(3):241-250. 被引量:38
  • 4姜伟,杨炳儒,隋海峰.局部敏感非负矩阵分解[J].计算机科学,2010,37(12):211-214. 被引量:5
  • 5徐佩霞 孙功宪.小波分析与应用实例[M].合肥:中国科学技术大学出版社,2001..
  • 6Kim J, Lee C,Kim J, et al. A Changeable Biometric System That Uses Parts-Based Localized Representation for Face Recognition [C]//IEEE Workshop on Automatic Identification Advanced Technologies. 2007 : 165-168.
  • 7Li Yu-jian, Liu Bo, Yang Xin-wu, et al. Multiconlitron: A General Pieeewise Linear Classifier[J]. IEEE Transactions on Neural Networks, 2011,22 (2) : 276-289.
  • 8Lin Qing, Hu Rui-rui, Zhan Yong-zhao. Facial Expression Feature Extraction Based on Integral Image [C]// International Conference on Advanced Computer Theory and Engineering. 2009:1345-1351.

二级参考文献67

  • 1汪鹏.非负矩阵分解:数学的奇妙力量[J].计算机教育,2004(10):38-40. 被引量:10
  • 2Anderson C W,Kirby M.EEG subspace representations and feature selection for brain computer interfaces.Proceedings of the 1st IEEE Workshop on Computer Vision and Pattern Recognition for Human Computer Interaction,2003,475~483
  • 3Garrett G,Peterson D A,Anderson C W,et al.Comparison of linear and nonlinear methods for EEG signal classification.IEEE Transactions on Neural Systems and Rehabilitative Engineering,2003,11(2):141~144
  • 4Saito N,Larson B M,Benichou B.Sparsity vs.statistical independence from a best-basis viewpoint.In:Aldroubi A,Laine A F,Unser M A,eds.Proc SPIE Wavelet Applications in Signal and Image Processing VIII,2000,4119:474~486
  • 5Saul L K,Sha F,Lee D D.Statistical signal processing with nonnegativity constraints.Proceedings of the Eighth European Conference on Speech Communication and Technology,Geneva,Switzerland,2003,2:1001~1004
  • 6Liu W X,Zheng N N,Li X.Relative gradient speeding up additive updates for nonnegative matrix factorization.Neurocomputing,2004,57:493~499
  • 7Wild S M,Curry J,Dougherty A.Improving non-negative matrix factorizations through structured initialization.Pattern Recognition,2004,37:2217~2232
  • 8Plumbley M D.Conditions for non-negative independent component analysis.IEEE Signal Processing Letters,2002,9(6):177~180
  • 9Downs O B,MacKay D,Lee D D.The nonnegative boltzmann machine.In:Solla S A,Leen T K,Muller K R,eds.Advances in Neural Information Processing Systems 12,2000,428~434
  • 10Ross D,Zemel R.Multiple cause vector quantization.In:Becker S,Thrun S,Obermayer K,eds.Advances in Neural Information Processing Systems 15.Cambridge:MIT Press,2003

共引文献82

同被引文献73

  • 1闫娟,程武山,孙鑫.人脸识别的技术研究与发展概况[J].电视技术,2006,30(12):81-84. 被引量:20
  • 2Lee D D,Seung H S.Learning the parts of objects by non-negative ma-trix factorization [J].Nature,1999,401(6755):788-791.
  • 3Li S Z,Hou X W,Zhang H J.Learning Spatially Localized,Parts-Based Representation [C] //IEEE Conf.on Computer Vision and Pat-tern Recogni-tion,2001.
  • 4Lee D D, Seung H S. Learning the parts of objects by non-nega- tive matrix faetorization[J]. Nature, 1999,401(6755) : 788-791.
  • 5Berry M W, Browne M, Langville A N, et al. Algorithms and ap- plications for approximate non-negative matrix factorization[J].Computational Statistics &Data Analysis, 2007,52 : 155-173.
  • 6Yuan Zhi-jian,Oja E. Projective nonnegative matrix faetorization for image compression and feature extraction[C]//Proceedings of the fourteenth Scandinavian Conference on Image Analysis. 2005 : 333-342.
  • 7Lee D D, Seung H S. Algorithms for non-negative matrix faetori- zation[J]. Advances in Neural Information Processing Systems, 2001,13 : 556-562.
  • 8Yoo J, Choi S. Orthogonal non-negative matrix tri-factorization for co-clustering: multiplicative updates on stiefel manifolds[J]. Information Processing & Management, 2010,46(5) : 559-570.
  • 9Li S Z, Hou Xirrwen, Zhang Hong-jiang, et al.Learning spatially localized, parts-based representation[C] // Proceedings of the /NEE conference on Computer Vision and Pattern Recognition, 2001 : 1-6.
  • 10Li Zhao, Wu Xin-dong,Peng Hong. Non-negative matrix factori- zation on orthogonal subspaee[J]. Pattern Recognition Letters, 2010,31 (9) .. 905-911.

引证文献8

二级引证文献24

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部