期刊文献+

基于黎曼流型度量的人工鱼群算法视觉跟踪 被引量:1

Visual Tracking of Artificial Fish Swarm Algorithm Based on Riemannian Manifold Metric
下载PDF
导出
摘要 针对经典的基于协方差算子的跟踪方法不能适应目标的遮挡及其全局搜索造成的过多计算消耗问题,提出了一种在黎曼流型度量上的人工鱼群算法的视觉跟踪方法。该方法将融合了目标的位置、颜色、梯度等特征区域的协方差算子作为目标的表观模型,以提高它对姿态变化以及亮度变化的适应性。利用人工鱼群算法搜寻目标与候选目标之间最优的匹配,其并行运算机制提高了跟踪算法的效率,其全局搜索的能力则提高了算法对遮挡问题的鲁棒性。实验结果表明,该算法在复杂背景情况下具有目标跟踪的鲁棒性。 A novel visual tracking method based on artificial fish swarm algorithm on Riemannian manifold metric was proposed.The new algorithm can well deal with the interactive occlusion,and consume less computation load comparing with global exhaustive search,both of which are the limits of classical covariance descriptor tracker.The paper used covariance descriptor combining with object information of position,color,and gradient to enhance the adaptability to change of gesture and illumination changing.The artificial fish swarm algorithm was utilized to find the best matching between object and candidate.Its parallel operation and global search ability improves the effectiveness of processing and can be more robust to occlusion.The experimental results show that the proposed method is more robust for visual tracking under complex scene.
出处 《计算机科学》 CSCD 北大核心 2012年第5期266-270,共5页 Computer Science
基金 国家自然科学基金(60970092 60970105) 山东工商学院青年科研基金(2011QN074 2011QN075) 山东省自然科学基金(ZR2011FQ039)资助
关键词 视觉跟踪 协方差算子 人工鱼群算法 马氏距离 黎曼流型 Visual tracking Covariance descriptor Artificial fish swarm algorithm Mahalanobis distance Riemannian manifold
  • 相关文献

参考文献15

  • 1侯志强,韩崇昭.视觉跟踪技术综述[J].自动化学报,2006,32(4):603-617. 被引量:255
  • 2高琳,唐鹏,盛鹏.基于前景分割和特征空间自适应选择的视觉目标跟踪[J].控制与决策,2010,25(2):207-212. 被引量:3
  • 3Comaniciu D, Ramesh V, Meet P. Kernel-based Obiect Tracking [J]. IEEE Transantion on Pattern Analysis and Machine Intelligence,2003,25(5) :564-577.
  • 4Cheng Y. Mean Shift Mode Seeking and Clustering[J]. IEEE Transantion on Pattern Analysis and Machine Intelligence, 1995,17(8): 790-799.
  • 5左军毅,赵春晖,梁彦,潘泉,张洪才.一种具有跟踪外观变化目标能力的均值漂移算法[J].计算机科学,2007,34(10):244-246. 被引量:2
  • 6袁广林,薛模根,韩裕生,周浦城.基于自适应多特征融合的mean shift目标跟踪[J].计算机研究与发展,2010,47(9):1663-1671. 被引量:26
  • 7Comaniciu D, Ramesh V, Meet P. Real-time Tracking of Nonrigid Objects Using Mean Shift[C]//IEEE Conference on Computer Vision and Pattern Recognition. Washington D C, USA, 2000:142-149.
  • 8Tuzel O, Porikli F, Meer P. Region Covariance: A Fast Descriptor for Detection and Classification[C]//9th European Conference on Computer Vision. Graz,Austria, 2006:589-600.
  • 9Porikli F, Tuzel O, Meer P. Covariance Tracking Using Model Update Based on Lie Algebra [C]// IEEE Computer Society Conference on Computer Vision and Pattern Recognition. New York, NY, USA, 2006: 728-735.
  • 10Ojala T, Pietikainen M, Harwood D. A Comparative Study of Texture Measures with Classification Based on Feature Distributions[J]. Pattern Recognition, 1996,29 : 51-59.

二级参考文献49

共引文献1178

同被引文献12

  • 1江铭炎,袁东风.人工鱼群算法及其应用[M].北京:科学出版社,2012.
  • 2Peng Yong. An improved artificial fish swarm algorithm for optimal operation of cascade reservoirs [ J ]. Journal of Computers, 2011,6 (4) :740-746.
  • 3Sivananaithaperumal S, Amall S M J, Baskar S, et al. Constrained self-adaptive differential evolution based desgin of robust optimal fixed structure controller[ J]. Engineering Applications of Artificial Intel- ligence,2011,24 (6) : 1084-1093.
  • 4Abdelkader R F. An improved discrete PSO with GA operators for ef- ficient QoS-multicast routing[J]. International Journal of Hybrid Information Technology, 2011,4(2) :23-38.
  • 5Zhang Jingqiao, Sanderson A C. JADE:adaptive differential evolution with optional external archive [ J]. IEEE Trans on Evolutionary Computation,2009,13 ( 5 ) :945- 958.
  • 6Tizhoosh H R. Opposition-based learning:a new scheme for machine intelligence [ C ]//Proc of IEEE Computational Intelligence for Model- ling,Cantml and Automation. 2005:695-701.
  • 7A1-Qunaieer F S, Tizhoosh H R, Rahnamayan S. Opposition based computing a survey [ C ]//Proc of International Joint Conference on Neural Networks, Barcelona: [ s. n. ] ,2010 : 1 - 7.
  • 8黄伟,郭业才,王珍.模拟退火与人工鱼群变异优化的小波盲均衡算法[J].计算机应用研究,2012,29(11):4124-4126. 被引量:5
  • 9王波.基于自适应t分布混合变异的人工鱼群算法[J].计算机工程与科学,2013,35(4):120-124. 被引量:16
  • 10郑延斌,刘晶晶,王宁.基于社会学习机制的改进人工鱼群算法[J].计算机应用,2013,33(5):1305-1307. 被引量:7

引证文献1

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部