期刊文献+

OTSU阈值改进及其在俯仰角测试中的应用 被引量:1

OTSU ' s Improved Threshold and its Application on Pitch Angle Test
下载PDF
导出
摘要 为了提取弹体飞行状态图像的边缘进而解算俯仰角,采用图像二值化、轮廓结构形态滤波对图像进行预处理.在利用OSTU进行图像二值化时,提出了根据高斯分布的"3δ"特性进行阈值提取的改进.在获得飞行弹体边缘轮廓的基础上,基于骨架提取中轴线法,采用坐标变换重构弹体在三维空间的真实轴线方程来解算俯仰角.边缘检测及俯仰角测试实例表明,该检测方法能够从含有噪声的图像中获得较好的图像边缘,可实现飞行弹体俯仰角的高精度解算. In order to detect the flight-state image edge of missile and analyze the pitch angle,binary image and contour bougie morphological filtering were adopted to preprocess the image.An improved threshold extraction method was presented according to the 3δ characteristics to binarize image with OSTU.Based on the obtained image edge of flying missile,the real axis-equation of missile in 3-dimension was reconstructed to solve pitch angle by coordinate transformation on the basis of skeleton extraction method.The edge detection and pitch-angle test show that good edges can be achieved from noise image by the detection method.The pitch angle can be solved by the coordinate transformation.
出处 《弹道学报》 EI CSCD 北大核心 2012年第1期107-110,共4页 Journal of Ballistics
关键词 外弹道 边缘检测 俯仰角 形态学滤波 二值化 exterior trajectory edge detection pitch angle morphological filter binarization
  • 相关文献

参考文献9

  • 1曹伟,魏英杰,王聪,邹振祝,黄文虎.超空泡技术现状、问题与应用[J].力学进展,2006,36(4):571-579. 被引量:68
  • 2GARABEDIAN P R. Calculation of axially symmetric cavities and jets[J]. Pac J Math,1956,6(4) :61-68.
  • 3贾力平,于开平,张嘉钟,王聪,魏英杰,李凝.空化器参数对超空泡形成和发展的影响[J].力学学报,2007,39(2):210-216. 被引量:32
  • 4易淑群,惠昌年,周建伟,张明辉,徐萌萌,沈基仁.通气量对轴向加速过程超空泡发展规律影响的试验研究[J].船舶力学,2009,13(4):522-526. 被引量:7
  • 5LOGVINOVICH G V. Hydrodynamics of free boundary flow, NASA-TT-F-658[R]. 1972.
  • 6SEMENENKO V N. Calculation of the 2D supercavity shape under harmonic perturbations [J]. International Journal of Fliud Mechanics Research, 2001,28 (5) : 673-682.
  • 7SEMENENKO V N. Artificial supercavitation physics and calculation[C]. RTO AVT Lecture Series on Supercavitating Flows. Brussels, Belgium: Von Karman Institute for Fluid Dynamics, 2001.
  • 8SAVCHENKO Y N,VLASENKO Y D,SEMENENKO V N. Experimental study of high-speed cavitated flows [J]. Int Journal of Fluid Mechanics Research,1999,26(3):365-374.
  • 9SAVCHENKO Y N. Control of supercavitation flow and stability of supercavitating motion of bodies[C]. RTO AVT Lecture Series on Supercavitating Flows. Brussels, Belgium: Von Karman Institute for Fluid Dynamics,2001.

二级参考文献24

共引文献99

同被引文献16

  • 1EPSHTEIN B, OFEK E, WEXLER Y. Detecting text in natural scenes with stroke width transform [ C ]//Proc of IEEE Conference on Com- puter Vision and Pattern Recognition. [ S. 1. ] : IEEE Press, 2010 : 2963-2970.
  • 2LIU Xiao-qing, SAMARABANDU J. Mu]tiscale edge-based text extrac- tion from complex images[ C]//Proc of IEEE International Conference on Multimedia and Expo. [ S. 1. ] : IEEE Press ,2006 : 1721-1724.
  • 3DU Yu-ning, DUAN Gen-quan, A1 Hai-zhou. Context-based text de- tection in natural scenes [ C]//Proc of the 19th IEEE International Conference on Image Processing. [ S. 1. ] : IEEE Press,2012: 1857-1860.
  • 4YI Chu-cai,TIAN Ying-li. Text detection in natural scene images by stroke Gabor words [ C ]//Proc of the 12th International Conference on Document Analysis and Recognition. [ S. 1. ] :IEEE Press,2011:177- 181.
  • 5PHAN T Q, SHIVAKUMARA P, TAN C L. A Laplacian method for video text detection [ C ]//Proc of the 10th International Conference on Document Analysis and Recognition. [ S. 1. ] : IEEE Press, 2009 : 66- 0.
  • 6ZHOU Zhi-wei, LI Lin-lin, TAN C L. Edge based binarization for video text images[ C ]//Proc of the 20th International Conference on Pattern Recognition. [ S. 1. ] : IEEE Press,2010 : 133-136.
  • 7ANTHIMOPOULOS M, GATOS B, PRATIKAKIS I, et al. Detecting text in video frames[ C]//Proc of the 4th International Conference on Signal Processing;Pattern Recognition and Applications. 2007:40-44.
  • 8AGHAJARI G, SHANBEHZADEH J, SARRAFZADEH A. A text lo- calization algorithm in color image via new projection profile [ C ]// Proc of International Multiconference of Engineers and Computer Scientists. 2010.
  • 9CHOI J H, LEE H Y, LEE H K. Color laser printer forensic based on noisy feature and support vector machine classifier [ J ]. Multimedia Tools and Applications,2013,67(2) :363-382.
  • 10SAUVOLA J, PIETIKAINEN M. Adaptive document image binariza- tion[ J]. Pattern Recognition, 2000, 33(2):225-236.

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部