期刊文献+

克隆选择算法分析及其改进的研究与应用 被引量:1

Research and Application of Clone Selection Algorithm Analysis and Its Improvement
下载PDF
导出
摘要 克隆选择算法被广泛应用到各个领域,为解决DeCastro克隆选择算法中存在的一些问题:需要根据人为经验确定种群规模的大小、种群训练的时间比较长、多峰搜索能力相对较弱,对其进行进一步的改进,运用新的克隆选择、克隆变异和最佳亲和度,并引入了抗体抑制操作,可动态确定种群大小,使算法具有较强的全局和局部搜索能力,同时也可以搜索到全局最优点和尽可能多的局部极值点。简单仿真实验结果表明,该算法的平均运行时间和找到峰值点个数都明显优于DeCastro克隆选择算法。 Clone selection algorithm is widely applied to various fields, in order to solve the existed problems of DeCastro clone selection algorithm that are the population size determined by the experience, relatively long population training time, weaker multi-peaks search cap ability, based on the analysis of clone selection algorithm made a further improvement, used new clone selection operation, clone mutation operation and the best affinity, and adopted the antibody suppression operation. The algorithm can dynamically determine the population size and has strong abilities of global and local search, also can search for global optimum and so many local minimum points. Simulation results show that the algorithm found the average running time and numbers of the peaks are much better than DeCastro clone selection algorithm.
作者 任永昌 朱萍
出处 《计算机技术与发展》 2012年第5期101-104,共4页 Computer Technology and Development
基金 国家自然科学基金资助项目(70871067) 辽宁省自然科学基金资助项目(20072207)
关键词 人工免疫 克隆选择算法 亲和度 多峰搜索 artificial immune clone selection algorithm affinity multi-peaks searching
  • 相关文献

参考文献9

二级参考文献34

  • 1杨冬,欧阳红生,王云龙,逄大欣.虚拟细胞研究进展及应用价值[J].细胞与分子免疫学杂志,2005,21(B03):65-67. 被引量:6
  • 2丛琳,沙宇恒,焦李成.基于免疫克隆选择算法的图像分割[J].电子与信息学报,2006,28(7):1169-1173. 被引量:21
  • 3Redou Pascal,Kerdelo Sebastien,Le Gal Christophe. Reactionagents: First mathematical validation of a multi-agent system for dynamical biochemical kinetics[C]. Proceedings of 12th Portuguese Conference on Artificial Intelligence, LNCS 3808,2005: 156-166.
  • 4Ewing RL,Abdel-Aty-Zohdy H S,Schuermeyer F. Exploring the biocomputing frontier[C]. 48th IEEE International of Midwest Symposium on Circuits and Systems, 2005:770-773.
  • 5Takahashi K,Ishikawa N, Sadamoto Y.E-Cell 2: Multi-platform E-cell simulation system[J].Bionformatics. 2003,19:1727-1729.
  • 6Takahashi K, Yugi K,Hashimoto K.Computational challenges in cell simulation[J].IEEE Intelligent Systems,2002,17:64-71.
  • 7McGarry M P, Reisslein M, Maier M. WDM Ethemet Passive Optical Networks[J]. IEEE Optical Communications, 2006, 44(2): 15-22.
  • 8Shami A, Bai Xiaofeng, Assi C M, et al. Jitter Performance in Ethernet Passive Optical Networks[J]. Journal of Lightwave Technology, 2005, 23(4): 1745-1753.
  • 9袁科,龚仁勇.EPON上行带宽分配算法研究[Z].[2009-02-10].http://scholar.ilib.cn/A-kjxx200728053.html.
  • 10Glen K, Mukherjee B, Pesavento G. IPACT: A Dynamic Protocol for an Ethernet PON(EPON)[J]. IEEE Communications Magazine, 2002, 40(2): 74-80.

共引文献20

同被引文献21

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部