期刊文献+

Ti-V基固溶体/AB_5型镧镁基合金复合储氢材料的结构与电化学性能 被引量:1

Structure and Electrochemical Characteristics of Ti-V-based Solid Solution/AB_5-type La-Mg-based Alloy Composite Hydrogen Storage Material
下载PDF
导出
摘要 两步电弧熔炼法制备Ti0.10Zr0.15V0.35Cr0.10Ni0.30+5wt%La0.85Mg0.25Ni4.5Co0.35Al0.15复合储氢合金,X射线衍射(XRD)和扫描电镜能谱(SEM-EDS)显示:复合储氢合金的主相是体心立方结构的钒基固溶体相和六方结构的C14Laves相,复合过程中生成了第二相.电化学研究表明:复合过程中存在明显的协同效应;在303 K时,复合合金电极的实际最大放电容量为361.8 mAh/g;在233 K时,复合合金电极的低温放电能力(LTD)是母体合金电极的4.05倍.与母体合金电极相比,复合合金电极的高倍率放电性能(HRD)提高了26.87%,电荷转移电阻(Rct)减小了37.25 m,同时交换电流密度(I0)增大了115.45 mA/g,合金体内氢的扩散系数(D)增大了6.13×10 10cm2/s. Composite hydrogen storage alloy Tio.10Zr0.15V0.asCr0.10Ni0.30 + 5wt% Lao.85Mg0.25Ni4.sCo0.35A10.15 was pre- pared by two-step arc melting. X-ray diffractometry (XRD) and scanning electron microscope-energy dispersive spec- troscopy (SEM-EDS) show that the main phase of the composite alloy consists of V-based solid solution phase with BCC structure and C14 Laves phase with hexagonal structure, while secondary phase also exists in the composite alloy Electrochemical studies show that distinct synergetic effect appears during the composite process. The real maximum discharge capacity of the composite alloy electrode is 361.8 mAh/g at 303 K, and the low temperature dischargeability (LTD) of the composite alloy electrode is 4.05 times as high as that of the matrix alloy electrode at 233 K. The high rate dischargeability (HRD), the charge-transfer resistance (Rot) and the exchange current density (I0) of the composite alloy electrode are 26.87 % bigger, 37.25 mΩ lower and 115.45 mA/g higher than that of the matrix alloy electrode, respectively. The hydrogen diffusion coefficient (D) in the bulk of the composite alloy is 6.13×10-10cm2/s bigger than that of the matrix alloy.
出处 《无机材料学报》 SCIE EI CAS CSCD 北大核心 2012年第5期463-468,共6页 Journal of Inorganic Materials
基金 河北省自然科学基金(B2011203074)~~
关键词 钛钒基固溶体 复合储氢合金 电化学性能 协同效应 Ti-V-based solid solution composite hydrogen storage alloy electrochemical characteristics synergeticeffect
  • 相关文献

参考文献29

  • 1Feng F, Geng M, Northwood DO. Electrochemical behaviour of intermetallic-based metal hydrides used in Ni/metal hydride (MH) batteries: a review. Int. J. Hydrogen Energy, 2001, 26(7): 725-734.
  • 2Liu Y, Wang Y, Xiao L, et al. Study on the structure and electrochemical performance of AB3-type hydrogen storage composite electrode material. Int. J. Hydrogen Energy, 2007, 32(17): 4220-4224.
  • 3Singh B K, Cho S W, Bartwal K S. Effect on structure and hydrogen storage characteristics of composite alloys Ti0.32Cr0.43V0.25 with LaNi5 and rare-earth elements La, Ce, Y. J. Alloys Compd., 2009, 478(1/2): 785-788.
  • 4Zhao X, Ma L. Recent progress in hydrogen storage alloys for nickel/metal hydride secondary batteries. Int. J. Hydrogen Energy, 2009, 34(11): 4788-4796.
  • 5Zhang W, Zhu Y, Yang C, et al. Effects of metal additive on electrochemical performances of Mg-based hydrogen storage materials prepared by hydriding combustion synthesis and subsequent mechanical milling (HCS+MM). Int. J. Hydrogen Energy, 2010, 35(15): 8241-8246.
  • 6Tsukahara M, Takahashi K, Mishima T, et al. Phase structure of V-based solid solutions containing Ti and Ni and their hydrogen absorption-desorption properties. J. Alloys Compd., 1995, 224(1): 162-167.
  • 7Tsukahara M, Takahashi K, Mishima T, et al. Metal hydride electrodes based on solid solution type alloy TiV3Nix (0≤x≤0.75). J. Alloys Compd., 1995, 226(1): 203-207.
  • 8Tsukahara M, Takahashi K, Mishima T, et al. Vanadium-based solid solution alloys with three dimensional network structure for high capacity metal hydride electrodes. J. Alloys Compd., 1997, 253-254: 583-586.
  • 9Kuriyama N, Tsukahara M, Takahashi K, et al. Deterioration behavior of a multiphase vanadium-based solid solution alloy electrode. J. Alloys Compd., 2003, 356-357: 738-741.
  • 10Zhang Q A, Lei Y Q, Yang X G, et al. Phase structure and electrochemical properties of Cr-added V3TiNi0.56Hf0.24Mn0.15 alloys. Int. J. Hydrogen Energy, 2000, 25(10): 977-981.

二级参考文献24

  • 1王仲民,周怀营,顾正飞,成刚.Mgx/Mg_2Ni复合储氢合金的机械合金化制备及电极性能[J].稀有金属材料与工程,2005,34(2):316-320. 被引量:12
  • 2肖学章,陈长聘,王新华,陈立新,王丽,高林辉.Mg-Fe-Ni非晶储氢电极材料的微结构和电化学性能[J].物理化学学报,2005,21(5):565-568. 被引量:10
  • 3杨君友,张同俊,崔崑,胡镇华.球磨过程中的碰撞行为分析[J].金属学报,1997,33(4):381-385. 被引量:39
  • 4Lei,Y.Q.;Yang,Q.M.:Wu.J.;Wang,Q.D.Z.Phys.Chem.Bd.,1994,183:379.
  • 5袁华堂 冯艳 宋赫男 王一菁.化工进展,2002,22(4):454-454.
  • 6Liu,J.W.;Yuan,H.Y.;Cao,J.S.;Wang,Y.J.Journal of Alloys and Compounds,2005,392:300.
  • 7Santos,S.F.;de Castro,J.F.R.;Ishikawa,T.T.:Ticianelli,E.A.Journal of Alloys and Compounds,2007,434-435:756.
  • 8Han,S.C.;Lee,P.S.;Lee,J.Y.;Andreas,Z.;Schlapbach,L.Journal of Alloys and Compounds,2000,306:219.
  • 9Nohara,S.;Hamasaki,K;Zhang,S.G.;Inoue,H.;Iwakura,C.Journal of Alloys and Compounds,1998,280:104.
  • 10Sun,D.L.;Lei,Y.Q.;Liu,w.H.;Jiang,J.J.;Wu,J.;Wang,Q.D.Journal of Alloys and Compounds,1995,231:621.

共引文献2

同被引文献14

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部