期刊文献+

细菌核糖体的拯救机制 被引量:1

Mechanism of Ribosome Rescue in Bacteria
下载PDF
导出
摘要 蛋白质翻译过程中,很多因素可能导致核糖体在mRNA上熄火,这对细胞的危害很大,因为这不仅占用了核糖体、氨基酸和tRNA,而且还可能产生有害的蛋白质.细菌进化出了多种核糖体拯救机制,释放熄火的核糖体,清除异常的mRNA,以规避毒害,如:①tmRNA·SmpB介导的拯救机制,又称为反式翻译介导的拯救机制;②ArfA(YhdL)介导的拯救机制;③YaeJ(ArfB)介导的拯救机制.这些机制对于细菌的生理和繁殖都非常重要,但却在真核生物进化过程中消失了,使这些机制有可能成为抗菌药物靶点.本文主要就细菌核糖体的拯救机制做一概述,并对这些机制的应用前景进行了展望. Occasionally,during translation,ribosomes stall on mRNAs prior to the completion,this serious threat to the cells,as it not only sequesters the ribosomes,amino acids and tRNAs,but also potentially produces toxic polypeptides.The bacteria have evolved some rescue mechanisms to ensure efficient release of the stalled ribosomes and removal of the defective mRNAs to avoid toxicity: ① tmRNA·SmpB-mediated rescue pathways,or trans-translation-mediated rescue pathways;② ArfA(YhdL)-mediated rescue pathways;③YaeJ(ArfB)-mediated rescue pathways.These rescue pathways are important for both bacterial physiology and pathogenesis,but have been missed in the eukaryotes,so these may serve as promising targets for developing novel antibiotics.In this article,the mechanisms of bacteria ribosome rescue will be discussed,and the application perspective of these mechanisms will also be speculated.
作者 谢兆辉
机构地区 德州学院生物系
出处 《中国生物化学与分子生物学报》 CAS CSCD 北大核心 2012年第5期412-418,共7页 Chinese Journal of Biochemistry and Molecular Biology
基金 国家自然科学基金(No.11172062)资助项目~~
关键词 核糖体拯救 tmRNA·SmpB介导的拯救机制 ArfA(YhdL)介导的拯救机制 YaeJ(ArfB)介导的拯救机制 校对 药物靶点 ribosome rescue tmRNA·SmpB-mediated rescue pathways ArfA(YhdL)-mediated rescue pathways YaeJ(ArfB)-mediated rescue pathways proofreading drug targets
  • 相关文献

参考文献56

  • 1Jorgensen F, Kurland C G. Processivity errors of gene expression in Escherichia coli[ J]. J Mol Biol, 1990, 215(4) :511-521.
  • 2Seidman J S, Janssen B D, Hayes C S. Alternative fates of paused ribosomes during translation termination [ J ]. J Biol Chem, 2011, 286(36) : 31105-31112.
  • 3Kapoor S, Samhita L, Varshney U. Functional significance of an evolutionarily conserved alanine(GCA) resume eodon in tmRNA in Escherichia coli[ J]. J Bacteriol, 2011, 193(14) :3569-3576.
  • 4Moore S D, Sauer, RT. Ribosome rescue: tmRNA tagging activity and capacity in Escherichia coli[J]. Mol Microbiol2005, 58(2) :456-466.
  • 5Ito K, Chadani Y, Nakamori K, et al. Nascentome analysis uncovers futile protein synthesis in Escherichia coli [ J ]. PLoS One, 2011, 6(12):e28413.
  • 6Collins L J, Biggs P J. RNA networks in prokaryotes II: tRNA processing and small RNAs[ J]. Adv Exp Med B iol, 2011, 722: 221-230.
  • 7Gueneau de Novoa P, Williams K P. The tmRNA website: reductive evolution of tmRNA in plastids and other endosymbionts [ J]. Nucleic Acids Res, 2004, 32 (Database issue) :D104-108.
  • 8O'Connor M. Minimal translation of the tmRNA tag-coding region is required for ribosome release [ J ]. Biochem Biophys Res Commun, 2007, 357 ( 1 ) :276-251.
  • 9Kurita D, Sasaki R, Muto A, et al. Interaction of SmpB with ribosome from directed hydroxyl radical probing [ J ]. Nucleic Acids Res, 2007, 35(21 ) :7248-7255.
  • 10Lies M, Maurizi M R. Turnover of endogenous SsrA-tagged proteins mediated by ATP-dependent proteases in Escherichia coli [J]. JBiolChem, 2008, 283(34): 22918-22929.

同被引文献29

  • 1Cheadle C, Fan J, Cho-Chung Y S, et al. Control of gene expression during T cell activation : alternate regulation of mRNA transcription and mRNA stability[ J]. BMC Genomics, 2005, 6: 75.
  • 2Kime L, Jourdan S S, Stead J A, et al. Rapid cleavage of RNA by RNase E in the absence of 5'monophosphate stimulation [ J]. Mol Microbiol, 2010,76 (3) :590-604.
  • 3Li Y, Altman S. A specific endoribonuclease, RNase P, affects gene expression of polycistronic operon mRNAs [ J]. Proc Natl Acad Sei U S A, 2003, 100(23) :13213-13218.
  • 4Kushner S R. mRNA decay in prokaryotes and eukaryotes: different approaches to a similar problem [ J]. IUBMB Life, 2004, 56(10) :585-594.
  • 5Awano N, Rajagopal V, Arbing M, et al. Escherichia coli RNase R has dual activities, helicase and RNase [ J ]. J Bacteriol, 2010, 192(5) :1344-1352.
  • 6Matos R G, Barbas A, Arraiano C M. RNase R mutants elucidate the catalysis of structured RNA: RNA-binding domains select the RNAs targeted for degradation[ J]. Biochem J, 2009, 423(2) :291-301.
  • 7Mohanty B K, Kushner S R. Bacterial/archaeal/organellar polyadenylation [ J ]. Wiley Interdiscip Rev RNA, 2011, 2 (2) : 256-276.
  • 8Mohanty B K, Kushner S R. The majority of Escherichia coli mRNAs undergo post- transcriptional modification in exponentially growing ceils [ J]. Nucleic Acids Res, 2006, 34 (19) :5695-5704.
  • 9Jones G H. RNA degradation and the regulation of antibiotic synthesis in Streptomyces[ J]. Future Microbiol, 2010, 5 (3) : 419-429.
  • 10Andrade J M, Hajnsdorf E, Regnier P, et al. The poly ( A)- dependent degradation pathway of rpsO mRNA is primarily mediated by RNase R [ J ]. RNA, 2009, 15 ( 2 ) :316-326.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部