期刊文献+

N-糖基化对乙型脑炎病毒prME和NS1基因免疫效果影响的研究 被引量:1

Roles of N-Glycosylation in Immunity of prME and NS1 Gene of JEV
原文传递
导出
摘要 prME和NS1为乙型脑炎病毒两个主要的免疫保护蛋白,且均为N-糖蛋白。为研究N-糖基化对乙型脑炎病毒免疫保护的作用,本研究用PCR介导的定点突变方法,分别消除乙型脑炎病毒prME和NS1基因的不同N-糖基化位点,并构建了prME和NS1突变基因的真核表达质粒。将质粒免疫四周龄雌性小白鼠,经两次免疫后,采集血清检测体液免疫反应,最后对小鼠用强毒进行攻击,观察并记录免疫保护力。研究结果显示,与野生型prME基因免疫组相比,消除单个糖基化位点后prME基因诱导的ELISA抗体、中和抗体和免疫保护力均略有升高,而同时消除两个糖基化位点的则会降低。NS1基因消除单个糖基化位点后保护率高达到100%,但消除两个糖基化位点后则免疫保护率略有降低(75%)。通过本研究证明,N-糖基化在维系乙型脑炎病毒prME和NS1蛋白的免疫保护中具有重要的作用,单个糖基化的缺失可增强蛋白的免疫原性,而两个糖基都缺失后,则造成了免疫效率的降低。 PrME and NS1 gene were the two main immuneprotect proteins of Japanese encephalitis virus (JEV), and they were also N-linked glycosylation proteins, To clear the effect of N-glycosylation on JEV immunity, the N-glycosylation site of prME and NS1 gene were eliminated by site-directed mutant PCR, subtituting the N to Q. And the the mutant genes were subcloned into eukaryotic expression plasmid. Four-weeks female mice were immuned with the wildtype and mutant gene by twice. The antibodies a- gainst prME were detected by ELISA and the neutralization antibodies were tested by viral neutralizing as- say. The immunoprotection were determined by attack with JEV virulent strain. Compare with the wild- type gene immune&groups, one N-glycan eliminated prME gene could induce a little higher ELISA anti- body, neutralization antibody and immunoprotection, but the immunity of gene with both N-glycan ab- sence was decreased. The similar status were observed in the wildtype and mutant NS1 groups. Thus these results show that the N-linked glycosylation in the prME and NS1 gene were correlated with the immuni- ty, one glycan absent would enhance the immunity but both two loss would impair it.
出处 《病毒学报》 CAS CSCD 北大核心 2012年第3期213-218,共6页 Chinese Journal of Virology
基金 国家自然科学基金(30800831) 863计划(2011AA10A212) 教育部新教师基金项目资助
关键词 乙型脑炎病毒 prME基因 NS1基因 N-糖基化 免疫 Japanese encephalitis virus prME gene NS1 gene N-glycosylation immunity
  • 相关文献

参考文献22

  • 1Barrett A D. Japanese encephalitis virus. In Encyclopae- dia of Virology [M]. Edited by: Mahy W J, van Regen- mortel MVH. Oxford: Elsevier; 2008:182-188.
  • 2卫生部法定传染病报告.http://www.chinacdc.cn/tjsj/fdcrbbg/.
  • 3Roberts P C, Garten W, Nlenk H IA. Role of conserveu glycosylation sites in maturation and transport of influ- enza A virus hemagglutinin [J]. J Virol, 1993, 67(6) : 3048-3060.
  • 4Li S, Sehulman J, Itamura S, et al. Glyeosylation of neuraminidase determines the neurovirulence of influenza A/WSN/33 virus [J]. Virol, 1993, 67(11): 6667- 6673.
  • 5Pollakis G, Kang S, Kliphuis A, et al. N-linked glyco- sylation of the HIV type-1 gpl20 envelope glycoprotein as a major determinant of CCR5 and CXCR4 coreeeptor utilization [J]. J Biol Chem, 2001, 276 (16): 13433- 13441.
  • 6Ito K, Qin Y, Guarnieri M, et al. Impairment of hepati- tis B virus virion secretion by single-amino-acid substitu- tions in the small envelope protein and rescue by a novel glycosylation site [J]. J Virol, 2010, 84 (24): 12850- 12861.
  • 7Goto A, Yoshii K, Obara M, et al. Role of the N-linked glycans of the prM and E envelope proteins in tick-borne encephalitis virus particle secretion[J]. Vaccine, 2005, 23:3043-3052.
  • 8Hanna S L, Pierson T C, Sanchez M D, et al. N-Linked glycosylation of West Nile Virus envelope proteins influ- ences particle assembly and infectivity [J]. J Virol, 2005, 79:13262-13274.
  • 9Li J, Bhuvanakantham R, Howe J, et al. The glycosy- lation site in the envelope protein of West Nile virus (Sarafend) plays an important role in replication and maturation processes[J]. J Gen Virol, 2006, 87:613-622.
  • 10严钦,俞慧清,成国祥.蛋白糖基化与免疫研究进展[J].现代免疫学,2008,28(2):165-168. 被引量:17

二级参考文献20

  • 1卞广兴.糖工程:糖基化对治疗蛋白性质的影响[J].国外医学(药学分册),2006,33(4):266-268. 被引量:1
  • 2邵鹏,赵鲁杭(审校).多糖对免疫细胞调节作用的新视角——对树突状细胞的影响[J].国际免疫学杂志,2006,29(4):237-241. 被引量:11
  • 3[3]Daniels MA,Hogquist KA,Jameson.SC.Sweet n sour:the impact of differential glycosylation on T cell responses[J].Nat Immunol,2002,3:903-910.
  • 4[4]Arnold JN,Wormald MR,Sim RB,et.al.The impact of glycosylation on the biological function and structure of human immunoglobulins[J].Annu Rev Immunol,2007,25:21-50.
  • 5[5]Burton DR,Dwek RA.Sugar determines antibody activity[J].Science,2006,4;313(5787):627-628.
  • 6[6]Ferrara C,Stuart F,Sondermann P,et.al.The carbohydrate at FcgammaRⅢa Asn-162.An element required for high affinity binding to non-fucosylated IgG glycoforms[J].J Biol Chem,2006,281(8):5032-5036.
  • 7[7]Woof JM.Tipping the scales toward more effective antibodies[J].Science,2005,310(5753):1442-1443.
  • 8[8]Ritchie GE,Moffatt BE,Sim RB.Glycosylation and the complement system[J].Chem Rev,2002,102(2):305-320.
  • 9[10]Rudd PM,Elliott T.Glycosylation and the immune system[J].Science,2001,291:2370-2376.
  • 10[12]Rudd PM,Wormald MR,Stanfield RL,et al.Roles for glycosylation of cell surface receptors involved in cellular immune recognition[J].J Mol Biol,1999,293(2):351-366.

共引文献16

同被引文献7

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部