摘要
利用锥拉伸和锥压缩型的Krasnosel'skii不动点定理,研究了一类边值中含有Riemann-Stieltjes积分的奇异高阶半正边值问题正解的存在性问题,其中非线性项.f(t,x)在t=0和t=1处具有奇异性.给正参数λ和函数f(t,x)赋予一定的条件,使得上述问题至少存在一个正解.
By using the Krasnosel'skii fixed point theorem of the cone expansion-compression type,the existence of positive solutions were considered for a class semipositone higher order singular nonlocal boundary value problems involving Riemann-Stieltjes integral conditions,where f(t,x) are singular at t=0 and t=1. Conditions on positive parameter A and f(t,x) were given that can guarantee the existence of at least one positive solution to the above problem.
出处
《兰州大学学报(自然科学版)》
CAS
CSCD
北大核心
2012年第2期97-100,105,共5页
Journal of Lanzhou University(Natural Sciences)
基金
国家自然科学基金项目(11061030)
甘肃省教育厅基金项目(1114-04)
关键词
高阶非局部奇异微分方程
格林函数
正解
半正边值问题
锥上不动点定理
higher order nonlocal singular differ equation
Green's function
positive solution
semi-positone problem
fixed point theorem in cone