期刊文献+

骨骺损伤修复过程中骺板形态及VEGF表达的变化 被引量:12

Morphosis of the epiphyseal plate and expression of vascular endothelial growth factor during healing of injured epiphyses
原文传递
导出
摘要 目的探讨大鼠骨骺损伤修复过程中骺板形态结构及骺板内血管内皮细胞生长因子(vascular endothelial growth factor,VEGF)表达的变化。方法取4-5周龄SD大鼠30只,制作胫骨近端骨骺损伤动物模型。随机分为五组,每组6只,分别于术后2、4、6、10、21天处死,取双侧胫骨。测量双侧胫骨长度,计算实验侧长度和对照侧长度比值。行双侧胫骨X线摄片、Micro CT扫描,观察骺板大体形态及骺板内骨桥形成情况。通过组织切片HE染色及免疫组织化学染色,观察骺板内软骨细胞变化及VEGF表达。结果双侧肢体长度于术后第4天出现差异,第10天差异最大,第21天肢体长度差异缩小。术后第6天开始骺板内逐渐出现纤细骨质,终至骨桥形成。HE染色提示伤后早期出现静止区软骨细胞聚集成团,细胞规律性排列丧失、分化加速。免疫组织化学染色显示术后生长板内出现VEGF高反应区,阳性表达区逐渐扩大,跨越骺板全层,直后血管长入、骨化。结论骨骺损伤修复过程中,骺板形态早中期表现为干骺端肥大,肢体短缩,骺板内纤细骨质形成;随修复进展,骺板内VEGF表达反应性增强,出现贯通骺板的表达带,与骨桥形成相关。 Objective To investigate morphosis of the epiphyseal plate and the expression of vascular endothelial growth factor (VEGF) in the epiphyseal plate during healing of injured epiphysis. Methods Thirty SD rats aged 4-5 weeks were used to make models of proximal tibia epiphysis injury. These models were equally divided into 5 groups in random, with 6 rats in each group, and these groups of rats were killed separately at 2, 4, 6, 10, 21 days postoperatively to harvest the proximal tibia epiphysis, in order to explore the morphosis of the epiphyseal plate and VEGF expression pattem in the epiphyseal plate at different healing phase. The structure of the epiphyseal plate was evaluated by measuring the length of the limb and radiographic examination of the limb. The ratio of length of injured tibia and that of the other side was used to describe the tibia length discrepancy. The micro structure of the epiphyseal plate and situation of the bone bridge in the epiphyseal plate were measured by using Micro CT. By using HE stain and VEGF immunohistochemistry, the changing of ehondrocyte and VEGF expression pattern in the epiphyseal plate were observed at different healing phase. Results The limb discrepancy appeared at 4 days postoperatively, became biggest at 10 days postoperatively, and tended to decrease at 21 days postoperatively. Micro CT demonstrated the fibrous bone tissue formation in the epiphyseal plate at about 6 days postoperatively, which became bone bridge finally. HE stain showed chondroeyte in the rest zone had the tendency to aggregate after injury, and the highly ordered structure of chondrocyte in the epiphyseal plate no longer existed, chondrocyte differentiation was accelerated. VEGF immunohistochemistry stain showed the high reaction of VEGF in the epiphyseal plate appeared after surgery, and the positive zone of VEGF expanded through the physis with time, which finally led to angiogenesis and ossification. Conclusion A serial alteration of morphosis of the epiphyseal plate occurred during the healing process. Fibrous bone tissue formation in the epiphyseal plate could be observed in the early and mid-term of the healing process. With progress of healing, VEGF expression zone gradually expanded across the epiphyseal plate, which is related to the formation of bone bridge.
出处 《中华骨科杂志》 CAS CSCD 北大核心 2012年第6期570-575,共6页 Chinese Journal of Orthopaedics
基金 国家自然科学基金资助课题(30750011)
关键词 骨骺 血管内皮细胞生长因子A 创伤和损伤 Epiphyses Vascular endothelial growth factor A Wounds and injuries
  • 相关文献

参考文献9

  • 1Burdan F, Szumlo J, Kortwic A, el al. Mtaphdk atttl phx.sology of the epiphyseai gnwth plae. Falia Hh.s, arhem Chidt. 2009, 47(1): 5-16.
  • 2Kronenberg HM. PTHrP and skeletal dexlopm. na Nd Sci, 2006, 1068(4): 1-13.
  • 3van der Eerden BC, Karpeden hi, Wilt JM. Slcmic and I, acd regulation of the growth plate. Endocr Rev, 2003. 24(6): 782-801.
  • 4吕学敏,邓廉夫,杨庆铭,肖德常.生长分化因子-5影响肢芽细胞分化的机制[J].中华骨科杂志,2005,25(6):368-371. 被引量:7
  • 5Gomes IAS, Volpon JB, Goncalves RP. Traunmtic elmw-atit epiphyses an experimental study in rals. Clin Ollh Rela Res. 1988(236): 286-295.
  • 6Chung R, Cool JC, Scherer MA, et al. Roles of neutrphil--mliat- ed inflammatory response in the bony ipair of injured Th plate cartilage in young rats..I Leukoc Bid, 2006, 80 (6): 1272- 1280.
  • 7Wattenbarger JM, Gruber HE, Phieffer IS. Physeal fraelutcs, part I: histologic features of bone, cartilage, and bar formation in a small animal model. J Pediatr Orthop, 2002, 22(6): 703-709.
  • 8Brouwers JE, van Donkelaar CC, Sengers BG, et al, Can the growth factors PTHrP, lhh and VEGF, together regulate the de- velopment of a long bone? J Biomech, 2006, 39(15): 2774~2782,.
  • 9Xian CJ. Zhou FH, McCarty RC, et al. lntramembranous ossifi- cation mechanism for bone bridge formation at the growth plate cartilage injury site. J Orthop Res, 2004, 22(2): 417-426.

二级参考文献9

  • 1Thomas JT,Kilpatrick MW,Lin K,et al.Disruption of human limb morphogenesis by a dominant negative mutation in CDMP1.Nat Genet,1997,17:58-64.
  • 2Hartmann C,Tabin CJ.Wnt-14 plays a pivotal role in inducing synovial joint formation in the developing appendicular skeleton.Cell,2001,104:341-351.
  • 3Francis-West PH,Abdelfattah A,Chen P,et al.Mechanisms of GDF-5 action during skeletal development.Development,1999,126:1305-1315.
  • 4Takeda S,Bonnamy JP,Owen MJ,et al.Continuous expression of Cbfal in nonhypertrophic chondrocytes uncovers its ability to induce hypertrophic chondrocyte differentiation and partially rescues Cbfal-deficient mice.Genes Dev,2001,15:467-481.
  • 5Ueta C,Iwarnoto M,Kanatani N,et al.Skeletal malformations caused by overexpression of Cbfal or its dominant negative form in ehondroeytes.J Cell Biol,2001,153:87-100.
  • 6Flint OP.A micromass culture method for rat embryonic neural cells.J Cell Sci,1983,61:247-262.
  • 7李宇,纪影畅,李晓昀,李军,张锦堃.多聚赖氨酸影响大鼠胚胎肢芽细胞软骨分化的研究[J].中华显微外科杂志,2001,24(3):206-207. 被引量:3
  • 8吕学敏,杨庆铭,邓廉夫.调控软骨生成和软骨内骨化的转录因子及其相关机制研究进展[J].中国矫形外科杂志,2004,12(3):268-270. 被引量:7
  • 9吕学敏,邓廉夫,杨庆铭,冯伟.GDF-5在小鼠肢体骨骼发育中的表达及对肢芽细胞影响的研究[J].中国矫形外科杂志,2004,12(7):521-523. 被引量:11

共引文献6

同被引文献156

引证文献12

二级引证文献32

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部