期刊文献+

高比表面积铝土矿载体的制备及在CO氧化反应中的应用 被引量:2

High Surface Area Bauxite:Preparation,Characterization and Application in CO Oxidation Reaction
下载PDF
导出
摘要 采用水热法,对天然铝土矿进行改性,获得高比表面积的铝土矿载体(Bauxite)。用等体积浸渍法制备了不同Pt含量的Pt/bauxite和1.0%Pt/Al2O3催化剂,以CO氧化为探针反应,考察了催化剂性能。采用XRF、XRD、低温N2-物理吸附、H2-TPR以及CO-TPD等对载体和催化剂样品进行表征。结果表明:Pt/bauxite催化剂具有优异的CO氧化性能,特别是当反应温度为200℃时,催化剂1.0%Pt/bauxite的CO转化率为93.4%,而1.0%Pt/Al2O3CO转化率仅为9.4%。其原因是铝土矿含有的Fe2O3是CO氧化反应的催化剂,且Fe2O3与负载的Pt之间发生了相互作用,降低了Pt和Fe2O3还原温度,提高了对CO的吸附能力且降低了CO的脱附温度,进而提高了催化剂的CO氧化反应性能。 The hydrothermally treated bauxite with high surface area was employed as the Pt based catalyst support. A series of Pt/bauxite catalysts were prepared by incipient-wetness impregnation method. The loading of Pt was varied from 0.5wt% to 2.0wt%. The catalysts were characterized by XRF, low temperature nitrogen adsorption-desorption, XRD, H2-TPR and CO-TPD. The catalyst performance for CO oxidation reaction was also investigated. The results indicate that Pt/bauxite catalysts have excellent property for CO oxidation reaction. Especially when the reaction temperature is at 200 ℃, CO conversion rate of 1.0%Pt/bauxite is 93.2%, while 1.0Pt/Al2O3 is only 9.4%, attributed to the interaction between Pt and Fe2O3 in the modified bauxite, and the interaction could decrease the reducing temperature of Pt oxide and Fe2O3 and also improve the adsorption-desorption behavior of Pt/bauxite catalysts for CO molecule, thus increasing the CO Oxidation activity.
出处 《无机化学学报》 SCIE CAS CSCD 北大核心 2012年第6期1157-1164,共8页 Chinese Journal of Inorganic Chemistry
基金 福建省自然科学基金(No.2011J01036) 福建省教育厅A类基金(No.JA09012) 福州大学人才启动经费 福州大学科技发展基金(No.2010-XQ-05)资助项目
关键词 水热法 Pt/铝土矿催化剂 CO氧化 hydrothermal Pt/bauxite catalyst CO Oxidation
  • 相关文献

参考文献27

  • 1Sirijaruphan A, Goodwin Jr J G, Rice R W. J. Card., 21104, 224(2):304-313.
  • 2Ayastuy J L, Gonz61ez-Marcos M P, Gutierrez-Ortiz M A, et al. Appl. Catal. B, 2007,70:532-541.
  • 3Chuang C C, Hsiang H I, Hwang J S, et al. J. Alloys Compd., 2009,470(1):387-392.
  • 4Kim K Y, Nam S W, Lim T H. et al. J. Ind. Eng. Chem., 2008,14(6):853-859.
  • 5YU Yi-Fu(于一夫),ZOU Zhi-Qiang(邹志强), MENG Ming(孟明), et al. Chinese J. Inorg. Chem.(Wuji Huaxue Xuebao), 2010,26(2):223-239.
  • 6Loviat F, Czekaj 'I, Wokaun A, et al. Surface Science, 2009, 603(14):2210-2217.
  • 7Ozdemir C, Akin A N, Yildirm R. Appl. CataL A, 2004,258 (2):145-152.
  • 8Rowlette P C, Wolden C A. Thin Solid Films, 2010,518(12): 3337-3341.
  • 9WEI Cun-Di(魏存弟), MA Hong-Wen(马鸿文), YANG Dian-Fan(杨殿范), et al. Bulletin of the Chinese Ceramic Society (Guisuanyan Tongbao), 2005,24(2):13-16.
  • 10Sing K S W, Everett D H, Haul R A W, et al. Pure Appl.Chem., 1985,57(4):603-619.

同被引文献7

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部