期刊文献+

High-throughput Phenotyping and Genomic Selection:The Frontiers of Crop Breeding Converge 被引量:13

High-throughput Phenotyping and Genomic Selection:The Frontiers of Crop Breeding Converge
原文传递
导出
摘要 Genomic selection (GS) and high-throughput phenotyping have recently been captivating the interest of the crop breeding com- munity from both the public and private sectors world-wide. Both approaches promise to revolutionize the prediction of complex traits, including growth, yield and adaptation to stress. Whereas high-throughput phenotyping may help to improve understanding of crop physiology, most powerful techniques for high-throughput field phenotyping are empirical rather than analytical and compa- rable to genomic selection. Despite the fact that the two method- ological approaches represent the extremes of what is understood as the breeding process (phenotype versus genome), they both consider the targeted traits (e.g. grain yield, growth, phenology, plant adaptation to stress) as a black box instead of dissectingthem as a set of secondary traits (i.e. physiological) putatively related to the target trait. Both GS and high-throughput phenotyping have in common their empirical approach enabling breeders to use genome profile or phenotype without understanding the underlying biology. This short review discusses the main aspects of both approaches and focuses on the case of genomic selection of maize flowering traits and near-infrared spectroscopy (NIRS) and plant spectral reflectance as high-throughput field phenotyping methods for complex traits such as crop growth and yield. Genomic selection (GS) and high-throughput phenotyping have recently been captivating the interest of the crop breeding com- munity from both the public and private sectors world-wide. Both approaches promise to revolutionize the prediction of complex traits, including growth, yield and adaptation to stress. Whereas high-throughput phenotyping may help to improve understanding of crop physiology, most powerful techniques for high-throughput field phenotyping are empirical rather than analytical and compa- rable to genomic selection. Despite the fact that the two method- ological approaches represent the extremes of what is understood as the breeding process (phenotype versus genome), they both consider the targeted traits (e.g. grain yield, growth, phenology, plant adaptation to stress) as a black box instead of dissectingthem as a set of secondary traits (i.e. physiological) putatively related to the target trait. Both GS and high-throughput phenotyping have in common their empirical approach enabling breeders to use genome profile or phenotype without understanding the underlying biology. This short review discusses the main aspects of both approaches and focuses on the case of genomic selection of maize flowering traits and near-infrared spectroscopy (NIRS) and plant spectral reflectance as high-throughput field phenotyping methods for complex traits such as crop growth and yield.
出处 《Journal of Integrative Plant Biology》 SCIE CAS CSCD 2012年第5期312-320,共9页 植物学报(英文版)
基金 Participation of Jos Luis Araus and María Dolors Serret was supported by the Spanish Project AGL2010-20180 (subprogram AGR) the FP7 European Project OPTICHINA (266045)
关键词 Genomic selection high-throughput phenotyping NIRS quantitative traits SNPs. Genomic selection high-throughput phenotyping NIRS quantitative traits SNPs.
  • 相关文献

参考文献53

  • 1Aguilar I, Misztal I, Tsuruta S, Wiggans GR, Lawlor TJ (2011) Multiple trait genomic evaluation of conception rate in Holsteins. J. Dairy Sci. 94, 2621-2624.
  • 2Aparicio N, Villegas D, Casadesus J, Araus JL, Royo C (2000) Spectral reflectance indices for assessing durum wheat biomass, green area, and yield under Mediterranean conditions. Agron. J. 92, 83-91.
  • 3Araus JL, Casadesus J, Bort J (2001) Recent tools for the screening of physiological traits determining yield. Chapter 5. In: Reynolds M, Ortiz-Monasterio I, McNab A, eds. Application of Physiology in Wheat Breeding. CIMMYT, Mexico, D.F. pp: 59-77.
  • 4Araus JL, Slafer GA, Reynolds MP, Royo C (2002) Plant breeding and water stress in C3 cereals: What to breed for? Ann. Bet. 89, 925-940.
  • 5Araus JL, Bort J, Steduto P, Villegas D, Royo C. (2003) Breeding cereals for Mediterranean conditions: Ecophysiological clues for biotechnology application. Ann. Appl. Biol. 142, 129-141.
  • 6Araus JL, Slafer GA, Royo C, Serret MD (2008) Breeding for yield potential and stress adaptation in cereals. Grit. Rev. Plant Sci. 27, 1-36.
  • 7Babar MA, van Ginkel M, Klatt AR, Prasad B, Reynolds MP (2006) The potential of using spectral reflectance indices to estimate yield in wheat grown under reduced irrigation. Euphytica 150, 155-172.
  • 8Bernardo R, Yu J (2007) Prospects for genome-wide selection for quantitative traits in maize. Crop Sci. 47, 1082-1090.
  • 9Burgueno J, de los Campos G, Weigel K, Crossa J (2012) Genomic prediction of breeding values when modeling genotype × environment interaction using pedigree and dense molecular markers. Crop Sci. doi; 10.2135/cropsci2011.06.0299.×.
  • 10Cabrera-Bosquet L, Sanchez C, Rosales A, Palacios-Rojas N, Araus JL (2011a) NIRS-assessment of δ18O, nitrogen and ash content for improved yield potential and drought adaptation in maize. J. Agric. Food Chem. 59, 467-474.

同被引文献71

引证文献13

二级引证文献129

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部