期刊文献+

电子束焊熔深神经网络模糊控制系统建模与仿真 被引量:4

Modeling and Simulation of Fuzzy Neural Network Control System of Penetration in Titanium-alloy Electron Beam Welding
下载PDF
导出
摘要 研究钛合金电子束焊熔深控制系统建模问题。在分析电子束焊接特点的基础上,设计三因素五水平正交试验,通过试验得到不同焊接参数下熔宽和熔深的值,将熔宽和熔深的值作为训练样本对神经网络进行训练,建立以熔宽为输入,以熔深为输出的误差反向传播(Error back propagation,BP)神经网络模型,该模型由一个S型函数隐含层加上一个线性输出层组成。针对熔深数学模型难以获得的情况,设计以熔深的偏差和偏差变化率为输入变量,焊接电流的变化量为输出变量的模糊控制器,该控制器有9条模糊控制规则。将BP神经网络模型和模糊控制器结合起来建立钛合金电子束焊熔深控制系统模型,并且采用单位阶跃信号对该模型进行仿真试验,试验结果表明所设计的控制系统动态性能和稳态性能良好。 The control system modeling of penetration is studied in titanium-alloy electron beam welding.On the basis of analysing the characteristics of electron beam welding,the orthogonal test of three factors and five levels is designed,the test is done to obtain the values of molten width and penetration under different welding parameters,the values of molten width and penetration are used as the training sample to train the neural network,thus a BP neural network model between molten width and penetration is established,the molten width is input,the penetration is output.The model consists of a S-function hidden layer plus a linear output layer.Because the mathematical model for penetration is difficult to obtain,so the fuzzy controller is designed,its input variables are bias and change rate of bias,its output variables are the change of welding current,The controller has nine fuzzy-control rules.The BP neural network model and fuzzy controller are combined to establish fuzzy neural network control-system model of penetration of titanium-alloy electron beam welding,and unit step signal is used to carry out the simulation experiment of the model,the results show that the dynamic performance and steady-state performance of designed control system are eminent.
出处 《机械工程学报》 EI CAS CSCD 北大核心 2012年第10期28-32,共5页 Journal of Mechanical Engineering
基金 国家重点基础研究发展计划资助项目(973计划 2010CB731704)
关键词 电子束焊 神经网络 模糊控制 Electron beam welding Neural network Fuzzy control
  • 相关文献

参考文献9

二级参考文献45

共引文献43

同被引文献47

  • 1王旭友,王威,林尚扬.焊接参数对铝合金激光--MIG电弧复合焊缝熔深的影响[J].焊接学报,2008,29(6):13-16. 被引量:33
  • 2Gao Xiangdong Faculty of Mechanical and Electrical Engineering,Guangdong University of Technology, Guangzhou 510090,China Huang Shisheng South China University of Technology.ARTIFICIAL NEURAL NETWORK AND FUZZY LOGIC CONTROLLER FOR GTAW MODELING AND CONTROL[J].Chinese Journal of Mechanical Engineering,2002,15(1):53-56. 被引量:3
  • 3武传松,陈茂爱,李士凯.GMAW焊接熔滴长大和脱离动态过程的数学分析[J].机械工程学报,2006,42(2):76-81. 被引量:17
  • 4刘黎明,张兆栋,沈勇,王来.活性剂对镁合金TIG焊接熔深的影响[J].金属学报,2006,42(4):399-404. 被引量:28
  • 5唐正魁,董俊慧,张永志.基于RBF神经网络预测接头力学性能的优化算法研究[J].材料科学与工艺,2009,17(增刊2):93-97.
  • 6HUANG Xixia, SHI Fanhuai, GU Wei, et al. SVM-based fuzzy rules acquisition system for pulsed GTAW process[J]. Engineering Applications of Artificial Intelligence, 2009, 22(8): 1245-1255.
  • 7ZAPATA J, VILAR R, RUIZ R. Performance evaluation of an automatic inspection system of weld defects in radiographic images based on neuro-classifiers[J]. Expert Systems with Applications, 2011, 38(7): 8812-8824.
  • 8ADEL M, MOHAMED B. Sizing of stand-alone photovoltaic systems using neural network adaptive model[J]. Desalination, 2007, 209(6): 64-72.
  • 9ALEX A, HARALAMBOS S, GEORGE B. A new algorithm for online structure and parameter adaptation of RBF networks[J]. Neural Networks, 2003, 16: 1003-1017.
  • 10FRDIRIC R, MARCO P, ARNAUD D, et al. Automatically initialization of RBF neural networks[J]. Chemometrics and Intelligent Laboratory Systems, 2007, 87. 26-32.

引证文献4

二级引证文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部