期刊文献+

整环上广义逆A_(T,S)^((2))的刻画

A Characterization of the Generalized Inverse A_(T,S)^((2)) over Integral Domains
下载PDF
导出
摘要 若A为整环上的n阶可逆矩阵,则X=A-1是满足方程ρ(I X A I)=ρ(A)的惟一矩阵.把它推广到射影自由的整环上得到关于矩阵A的广义逆A T,S(2)的刻画. If A is an invertible matrix of order n over an integral domain, the inverse of A is the uniquematrix X such that p(I^A X^I).In this paper, we generalize this fact to any general matrix over anintegral domain which is projective free to obtain an analogous result for the generalized inverse AT,S(2).
作者 朱光艳
出处 《湖北民族学院学报(自然科学版)》 CAS 2012年第2期189-190,195,共3页 Journal of Hubei Minzu University(Natural Science Edition)
关键词 广义逆AT S(2) 正则矩阵 整环 幂等矩阵 generalized inverse AT,S(2) regular matrix integral domain idempotent matrix
  • 相关文献

参考文献8

  • 1Yu Y M,Wang G R. The generalizedinverse AT,S'(2) over commutative rings[J].Linear and Multilinear Algebra,2005,53:293-302.
  • 2Bhaskara Ran, K. P S. The theory of generalized inverse over commutative ring[ M ]. London and New York:Taylor and Francis,2002.
  • 3Wei Y M. A characterization and representation of the generalized inverse A(r2s) and it' s applications[ J]. Linear Algebra Appl, 1998,280:87-96.
  • 4Fiedler M and. Markham T L. A characterization of the Moor-Penrose inverse [ J ]. Linear Algebra Appl, 1993,179 : 129-133.
  • 5Wei Y M. A characterization for the W-weighted Drazin inverse and a Cramer rule for the W-weighted Drazin inverse solution[ J]. Appl Math Corn- put, 2002,125:303-310.
  • 6朱光艳,刘晓冀.整环上矩阵的加权Moore-Penrose逆[J].湖北民族学院学报(自然科学版),2010,28(3):344-348. 被引量:1
  • 7Chen Yonglin. A cramer rule for solution of the qeneral restricted linear equation [ J ]. Linear and Muhilinear Algebra, 1993,34:177-186.
  • 8Ben-Israel A, Greville T N E. Generalized Inverse:Theory and Application [ M ]. New York : Springer-Verlag,2003.

二级参考文献6

  • 1Wang G R,Wei Y M,Qiao S Z. Generalized Inverses:theory and computations[ M]. New York:Science Press,2004.
  • 2Bhaskara Rao, K P S. The theory of generalized inverse over commutative rings[ M ]. London and New York:Taylor and Francis,2002.
  • 3Prasad K M, Bapat R B. The Generalized Moore-Penrozelnveme [ J ]. Linear Algebra Appl, 1992,165:59 -69.
  • 4Robinson D W, Puystjens R, Van Geel J. Categories of matrices with only obvious Moore-Penrose inverse[ J ]. Linear Algebra Appl, 1987,97:93- 102.
  • 5Robinson D W. The classical adjoint [ J]. Linear Algebra Appl,2005,411:254-276.
  • 6黄旭,刘丁酉.Moore-penrose逆交换性的秩方法[J].湖北民族学院学报(自然科学版),2010,28(2):124-127. 被引量:3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部