期刊文献+

热交换多孔圆盘间三阶流体的MHD轴对称流动

MHD Axisymmetric Flow of a Third-Grade Fluid Between Porous Disks With Heat Transfer
下载PDF
导出
摘要 在两个具有热交换可渗透的多孔圆盘之间,研究三阶流体的磁流体动力学(MHD)流动.通过适当变换,将偏微分的控制方程转换为常微分方程.采用同伦分析法(HAM)求解转换后的方程.定义了均方残余误差的表达式,并选择了最佳的、收敛的控制参数值.检测了无量纲参数变化时的无量纲速度和温度场.列表显示表面摩擦因数和Nusselt数,并分析了无量纲参数的影响. The magnetohydrodynamic(MHD) flow of third-grade fluid between two permeable disks with heat transfer was investigated.The governing partial differential equations were converted into the ordinary differential equations by using suitable transformations.Transformed equations were solved by using homotopy analysis method(HAM).The expressions for square residual errors were defined and optimal values of convergencecontrol parameters were selected.The dimensionless velocity and temperature fields were examined for various dimensionless parameters.Skin friction coefficient and Nusselt number were tabulated to analyze the effects of dimensionless parameters.
出处 《应用数学和力学》 CSCD 北大核心 2012年第6期710-725,共16页 Applied Mathematics and Mechanics
基金 Alsaedi博士对沙特阿拉伯阿卜杜勒阿齐兹国王大学科学研究院(DSR)的资助
关键词 热交换 轴对称流动 三阶流体 多孔圆盘 表面摩擦因数 NUSSELT数 heat transfer axisymmetric flow third-grade fluid porous disks skin friction coefficient Nusselt number
  • 相关文献

参考文献31

  • 1Fetecau C, Mahmood A, Jamil M. Exact solutions for the flow of a viscoelastic fluid induced by a circular cylinder subject to a time dependent shear stress[ J]. Communications in Non- linear Science and Numerical Simulation, 2010, 15(12) : 3931-3938.
  • 2Jamil M, Fetecau C, Imran M. Unsteady helical flows of Oldroyd-B fluids[ J]. Communica- tions in Nonlinear Science and Numerical Simulation, 2011, 16(3) : 1378-1386.
  • 3Jamil M, Rauf A, Fetecau C, Khan N A. Helical flows of second grade fluid to constantly ac- celerated shear stresses[J]. Communications in Nonlinear Science and Numer~al Simula- tion, 2011, 16(4) : 1959 -1959.
  • 4Tan W C, Masuoka T. Stability analysis of a Maxwell fluid in a porous medium heated from below [ J ]. Physics Letters A, 2007, 360 (3) : 454-460.
  • 5Tan W C, Masuoka T. Stokes' first problem for an Oldroyd-B fluid in a porous half space [J]. Physics of 1~uids, 2005, 17(2) : 023101-7.
  • 6Sajid M, Hayat T. Non-similar series solution for boundary layer flow of a third-order fluid o- ver a stretching sheet [ J]. Applied Mathematics and Computation, 2007, 180 ( 2 ) : 1576- 1585.
  • 7Sajid M, Hayat T, Asghar S. Non-similar analytic solution for MHD flow and heat transfer in a third order fluid over a stretching sheet[ J]. International Journal of Heat and Mass Trans- fer, 2007, 50(9/10) : 1723-1736.
  • 8Hayat T, Mustafa M, Asghar S. Unsteady flow with heat and mass transfer of a third grade fluid over a stretching surface in the presence of chemical reaction[J]. Nonlinear Analysis: Real World Applications, 2010, ll(4) : 3185-3197.
  • 9Abbasbandy S, Hayat T. On series solution for unsteady boundary layer equations in a special third grade fluid [ J ]. Communications in Nonlinear Science and Numerical Simulation, 2011, 16(8): 3140-3146.
  • 10Sahoo B. Hiemenz flow and heat transfer of a third grade fluid[ J]. Communications in Non- linear Science and Numerical Simulation, 2009, 14 ( 3 ) : 811-826.

二级参考文献32

  • 1Eringen A C. Theory of micropolar fluids [ J]. J Math, 1966, 16 ( 1 ) : 1-18.
  • 2Gorla R S R, Mansour M A, Mohanunedien A A. Combined convection in an axisymmetric stagnation flow of micropolar fluid [J]. Int J Num Meth Heat Fluid Flow, 1996, 6 (4) : 47-55.
  • 3Gorla R S R, Takhar H S. Boundary layer flow of micropolar fluid on rotating axisymmetric surfaces with a concentrated heat source[ J]. Acta Mechanica, 1994, 10S ( 1/4 ) :1- 10.
  • 4Guram G S, Smith A C. Stagnation flows of micropolar fluids with strong and weak interactions[J]. Compu Math Appl, 1980, 6(2) : 213-233.
  • 5Kumari M, Nath G. Unsteady incompressible boundary layer flow of a micropolar fluid at a stagnation point[J]. Int JEng Sci, 1984, 22(16) : 755-768.
  • 6Abdullah I, Amin N. A micropolar fluid model of blood flow through a tapered artery with a stenosis[J]. Mathematical Methods in the Applied Sciences, 2010, 33(16) : 1910-1923. doi: 10. 1002/mma. 1303.
  • 7Seddeek M A. Flow of a magneto-micropolar fluid past a continuously moving plate[J]. Phy Lett A, 2003, 306 (4) : 255-257.
  • 8Nazar R, Amin N, Filip D, Pop I. Stagnation point flow of a micropolar fluid towards a stretching sheet [J ]. Int J Non-Linear Mech, 2004, 39 ( 7 ) : 1227-1235.
  • 9Takhar H S, Bhargava R, Agrawal R S, Balaji A V S. Finite element solution of a micropolar fluid flow and heat transfer between two porous discs [ J]. Int J Eng Sci, 2000, 38 ( 17 ) : 1907- 1922.
  • 10Abo-Eldahab E M, Ghonaim A F. Radiation effects on heat transfer of a micropolar fluid through a porous medium[J]. Appl Math Comp, 2005, 169( 1 ) :500-510.

共引文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部