期刊文献+

热泳和Brown运动对太阳能辐射下热分层纳米流体边界层流动的影响

Thermophoresis and Brownian Motion Effects on Boundary-Layer Flow of a Nanofluid in the Presence of Thermal Stratification Due to Solar Energy
下载PDF
导出
摘要 在太阳辐射下的纳米流体中,数值地研究竖向延伸壁面具有可变流条件时的层流运动.使用的纳米流体模型为,在热分层中综合考虑了Brown运动和热泳的影响.应用一个特殊形式的Lie群变换,即缩放群变换,得到相应边值问题的对称群.对平移对称群得到一个精确解,对缩放对称群得到数值解.数值解依赖于Lewis数、Brown运动参数、热分层参数和热泳参数.得到结论:上述参数明显地影响着流场、温度和纳米粒子体积率的分布.显示出纳米流体提高了基流体热传导率和对流的热交换性能,基流体中的纳米粒子还具有改善液体辐射性能的作用,直接提高了太阳能集热器的吸热效率. The problem of laminar fluid flow resulted from the stretching of a vertical surface with variable stream conditions in a nanofluid due to solar energ was investigated numerically.The model used for the nanofluid incorporated the effects of Brownian motion and thermophoresis in the presence of thermal stratification.The symmetry groups admitted by the corresponding boundary value problem were obtained by using a special form of Lie group transformations viz.scaling group of transformations.An exact solution was obtained for translation symmetry and numerical solutions for scaling symmetry.This solution depended on a Lewis number,Brownian motion parameter,thermal stratification parameter and thermophoretic parameter.The conclusion was drawn that the flow field and temperature and nanoparticle volume fraction profiles were significantly influenced by these parameters.Nanofluids were shown to increase the thermal conductivity and convective heat transfer performance of the base liquids.Nanoparticles in the base fluid also offered the potential of improving the radiative properties of the liquids,leading to an increase in the efficiency of direct absorption solar collectors.
出处 《应用数学和力学》 CSCD 北大核心 2012年第6期726-739,共14页 Applied Mathematics and Mechanics
关键词 太阳辐射 BROWN运动 纳米流体 热泳 热分层 solar radiation Brownian motion nanofluids thermophoresis thermal stratification
  • 相关文献

参考文献26

  • 1Otanicar T P, Phelan P E, Golden J S. Optical properties of liquids for direct absorption solar thermal energy systems[J]. Solar Energy, 2009, 83(7): 969-977.
  • 2Richard K S, Lee S M. 800 hours of operational experience from a 2 kW solar dynamic system [C]//Mohamed S E1-Genk. Space Technology and Application International Forum, 1999: 1426-1431.
  • 3Odeh S D, Behnia M, Morrison G L. Performance evaluation of solar thermal electric genera- tion systems [ J ]. Energy Conversion and Management, 2003, 44 (4) : 2425-2443.
  • 4Clausing A. Analysis of convective losses from cavity solar central receivers[J]. Solar Ener- gy ,1981,27(1) : 295-300.
  • 5Dehghan A A, Behnia M. Combined natural convection conduction and radiation heat transfer in a discretely heated open cavity[J]. Journal of Heat Transfer, 1996, 118( 1 ) : 55-55.
  • 6Muftuoglu A, Bilgen E. Heat transfer in inclined rectangular receivers for concentrated solar radiation [ J]. International Communications in Heat and Mass Transfer, 2008, 35 (5) : 551- 556.
  • 7Kennedy C E. Review of mid- to high-temperature solar selective absorber materials [ R ]. NREL/TP-520-31257, Golden CO. National Renewable Energy Laboratory, 2002.
  • 8Trieb F, Nitsch J. Recommendations for the market introduction of solar thermal power sta- tions[J]. Renewable Energy, 1998, 14(1):17-22.
  • 9林培锋,林建忠.纳米粒子在弯管中的输运和沉降特性[J].应用数学和力学,2009,30(8):895-906. 被引量:4
  • 10LIN Jian-zhong, LIN Pei-feng, CHEN Hua-jun. Research on the transport and deposition of nanoparticles in a rotating curved pipe [J].Physics of Tuids, 2009, 21 ( 12 ) : 1-11.

二级参考文献2

共引文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部