期刊文献+

基于速度场简化的人群行为分析 被引量:4

Crowd behavior analysis based on velocity field simplification
下载PDF
导出
摘要 针对视频监控中人群异常行为难于被检测的问题,提出了一种基于速度场简化的人群行为分析方法。速度场简化方法利用拓扑简化和聚类算法对人群运动的速度场进行分析,提取出入群运动的宏观行为信息,之后利用这些信息检测人群中发生的各种异常事件。与其它方法相比,速度场简化方法具有不需要训练的优点,并且具有较好的鲁棒性。在买验中,利用速度场简化方法对人群整体行为异常、人群速度异常、人群间行为异常这三类事件进行了检测。实验结果表明,该方法的检测结果与真实情况十分接近。 To solve the problem that crowd abnormal behavior detection is difficult to be achieved during video surveillance, this paper proposes a crowd behavior analysis method based on velocity field simplification. The method of velocity field simplification uses topological simplification and clustering analysis to extract the information of a crowd, and then uses the information to detect the anomaly in the crowd. The biggest advantage of velocity field simplification method over others is that it does not need the time-consuming training. The proposed method was tested on the detection of three categories of abnormality: crowd formation/dispersal, changes in crowd speed and crowd splitting/merging. The experiments indicate that the proposed method can efficiently extract the main behaviors of crowd motion and the detection results are similar to the ground truth.
作者 李楠 张志敏
出处 《高技术通讯》 CAS CSCD 北大核心 2012年第5期490-496,共7页 Chinese High Technology Letters
基金 国家自然科学基金(60703019)资助项目.
关键词 视频监控 人群行为分析 速度场简化 拓扑分类 聚类算法 video surveillance, crowd behavior analysis, velocity field simplification, topological classifica-tion, clustering algorithm
  • 相关文献

参考文献14

  • 1Ihaddadene N, Djeraba C. Real-time crowd motion analy- sis. In: Proceedings of 19th International Conference on Pattern Recognition, Tampa, USA, 2008. 1-4.
  • 2Mehran R, Oyama A, Shah M. Abnormal crowd behavior detection using social force model. In: Proceedings of 2009 IEEE Conference on Computer Vision and Pattern Recognition, Miami, USA, 2009. 935-942.
  • 3Wu S, Moore B E, Shah M. Chaotic invariants of La-grangian particle trajectories for anomaly detection in crowded scenes. In: Proceedings of 2010 IEEE Confer- ence on Computer Vision and Pattern Recognition, San Francisco, USA, 2010. 2054-2060.
  • 4Mahadevan V, Li W, Bhalodi V, et al. Anomaly detection in crowded scenes. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, San Fran- cisco, USA, 2010. 1975-1981.
  • 5Kratz L, Nishino K. Anomaly detection in extremely crowded scenes using spatio-temporal motion pattern models. In: Proceedings of 2009 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops, Miami, USA, 2009. 1446-1453.
  • 6Helman J, Hesselink L. Visualizing vector field topology in fluid flows. IEEE Computer Graphics and Applications, 1991, 11(3) :36-46.
  • 7Fischler M A, Bolles R C. Random sample consensus: A paradigm for model fitting with app!ications to image anal- ysis and automated cartography. Communications ofACM, 1981,24(6) : 381-395.
  • 8Duda R O, Hart P E, Stork D G. Pattern Classification. Wiley-Interscience, 2001.
  • 9Dhillon I S, Modha D S. Concept decompositions for large sparse text data using clustering. Machine Learning, 2001, 42(1): 143-175.
  • 10Amoi' d V ii Ordinary Differential Equations. New York : Springer, 1992.

同被引文献27

引证文献4

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部