期刊文献+

刚结点转变为铰结点后内力重分布的简捷计算法 被引量:1

A SIMPLIFIED METHOD FOR INTERNAL FORCE REDISTRIBUTION ANALYSIS DUE TO TRANSITION FROM STIFF-JOINT TO HINGE
原文传递
导出
摘要 基于最小势能原理,建立了刚架结构的间接荷载效应矩阵。将间接荷载效应矩阵转化为约束矩阵后,根据约束矩阵的性质,推导了刚结点转变为铰结点时约束矩阵自身的传递规律。将约束矩阵中导出的重分布弯矩向量与初始弯矩向量进行叠加,即可得到新刚架结构的内力。因为避免了刚度矩阵的再次形成与分解、计算结点位移等中间过程,所以使计算量大幅度减少。算例表明该文提出的简洁方法是正确、可靠和有效的。 Based on the principle of minimum potential energy, the indirect load effect matrix of a rigid frame is established. The transfer law of a constrain matrix due to transition form a stiff-joint to a hinge is deduced according to the property of the constrain matrix transformed from the indirect load effect matrix. Add the redistribution moment vector derived from the constrain matrix to an original moment vector, and the intemal force of the new rigid frame can be obtained immediately. As the simplified method avoids rebuilding and decomposing the total stiffness matrix and the solution of joint displacements, the computation rate is greatly improved. The numerical examples show that the proposed simolified method is correct, reliable and effective
作者 陈棋 寇新建
出处 《工程力学》 EI CSCD 北大核心 2012年第6期52-57,共6页 Engineering Mechanics
关键词 刚架结构 内力重分布 间接作用 结点约束 传递规律 rigid flame structure redistribution of internal force indirect action nodal constraint transfer law
  • 相关文献

参考文献11

二级参考文献18

共引文献141

同被引文献14

  • 1夏巨伟,邓华.索杆张力结构最不利预张力偏差的近似解析方法[J].工程力学,2015,32(6):8-14. 被引量:1
  • 2柳承茂,刘西拉.基于刚度的构件重要性评估及其与冗余度的关系[J].上海交通大学学报,2005,39(5):746-750. 被引量:99
  • 3PELLEGRINO S, CALLADINE C. Matrix analysis of statically and kinematically indeterminate frameworks[J]. International Journal of Solids and Structures, 1986, 22(4):409-428.
  • 4STRBEL D, SINGER P. Recent developments in the computational modelling of textile membranes and inflatable structures[C]∥Textile Composites and Inflatable Structures II. Netherlands: Springer, 2008: 253-266.
  • 5TIBERT G. Distributed indeterminacy in frameworks[C]∥Proceedings of the 5th International Conference on Computation of Shell and Spatial Structures. Satzburg, Austria: IASS-IACM, 2005: 1-5.
  • 6ERIKSSON A, TIBERT A G. Redundant and force-differentiated systems in engineering and nature[J]. Computer Methods in Applied Mechanics and Engineering, 2006, 195(41-43): 5437-5453.
  • 7CHEN Q, KOU X J. A constraint matrix approach for structural ultimate resistance to access the importance coefficient values of rigid joints[J]. Advances in Structural Engineering, 2013, 16(11): 1863-1870.
  • 8PELLEGRINO S. Structural computations with the singular value decomposition of the equilibrium matrix[J]. International Journal of Solids and Structures, 1993, 30(21): 3025-3035.
  • 9CHEN W J, ZHOU J Y, ZHAO J Z. Computational methods for the zero-stress state and the pre-stress state of tensile cable-net structures[J]. Journal of Zhejiang University-Science A, 2014, 15(10): 813-828.
  • 10ZHOU J Y, CHEN W J, ZHAO B, et al. Distributed indeterminacy evaluation of cable-strut structures: Formulations and applications[J]. Journal of Zhejiang University-Science A, 2015, 16(9): 737-748.

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部