期刊文献+

采用动态神经网络的多模型自适应重构控制方法

Multiple-model Adaptive Reconfiguration Control Based on Dynamic Neural Network
下载PDF
导出
摘要 针对复杂的系统,提出一种基于多模型结构的自适应重构控制方法,使得系统可以在不同的运行环境下跟踪给定的信号,并且对特定的故障情况具有控制重构的能力;首先,由多个线性模型和一个模糊模型构成多模型控制结构,并设计多模型自适应控制器的权值调整规则,以获得当前最佳的控制输入,再引入动态自适应神经网络以保证系统的稳定性,并避免模型切换等噪声干扰;最后,对某型歼击机进行正常和故障状态下的控制仿真,结果表明所提重构控制方法是可行有效的。 For the complex control system, a kind of adaptive reconfiguration control method using multiple models is presented in this paper, in order to make the controlled system track the given signal under different working conditions, and to reconfigure control law under some structural failure condition. First, the multiple--model control structure is formed combine several linear models with one fuzzy model, so the weight-- adjusting regulation of the adaptive controller are obtained in view of the multiple--model structure. Then a dynamic neural network is introduced to stable the whole system and eliminate the influence caused by frequent switching. The simulation results show the control method presented is effective by demonstrating normal flight process and that with failures for an uncertian fighter plane.
出处 《计算机测量与控制》 CSCD 北大核心 2012年第5期1255-1257,1260,共4页 Computer Measurement &Control
基金 国家自然科学基金青年项目(61104123) 江苏省高校自然科学研究计划项目(20100227)
关键词 多模型 动态神经网络 重构控制 飞控系统 multiple model dynamic neural network reconfiguration control adaptive control; flight control system
  • 相关文献

参考文献11

  • 1Matthew Kuure--Kinsey, B. Wayne Bequette, Multiple model predictive control of nonlinear systems [J]. Lecture Notes in Control and Information Science, 2009, 384 : 153-- 165.
  • 2Narendra Kumpati S. ,Han Zhou, Location of models in multiple-model based adaptive control for improved performance [A]. American Control Conference (ACC) [C]. June 30-Juty 2, Baltimore, MD, USA, 2010.
  • 3Lunze J. , Steffen T. , Control reconfiguration after actuator failures using disturbance decoupling methods [J]. IEEE trans. On Automatic Control, 2006, 51 (10): 1590--1601.
  • 4刘亚,胡寿松.基于模糊模型的鲁棒自适应重构飞行控制[J].航空学报,2004,25(2):143-147. 被引量:11
  • 5M. Chadi, A. Akhenak, J. Ragot, etc, State and unknown input estimation for discrete time multiple model [J].Journal of the Franklin Institute, 2009, 346 (6): 593--610.
  • 6Sadati. N, Chadami. R, Adaptive fuzzy sliding mode control using multiple models approach [J]. Engineering of Intelligent Systems, 2006, 4: 1--6.
  • 7Chen L. J, Kumpati S, Narendra K S, Nonlinear adaptive control u sing neural networks and multiple models [J]. Automatiea, 2001, 37: 1245--1255.
  • 8Li Y, Sundararajan N, Saratchandran P, Neuro--controller design for nonlinear fighter aircraft maneuver using fully tuned RBF net works [J]. Automatica, 2001, 37: 1293--1301.
  • 9Patan K, Stability Analysis and the Stabilization of a class of discrete--time dynamic neural networks [J]. IEEE Trans. On Neural Networks, 2007, 18 (3): 660-673.
  • 10Jun Tani, Ryunosuke Nishimoto, Jun Namikawa, etc, Codevelopmental learning between human and humanoid robot using a dynamic neural network model [J]. IEEE Trans. On System, Man, and Cybernetics--Part B: Cybernetics, 2008, 38 (1): 43--59.

二级参考文献17

  • 1李炜,许德智,李二超.基于RBF网络的逆系统多模型内模主动容错控制[J].华中科技大学学报(自然科学版),2009,37(S1):98-101. 被引量:6
  • 2宋夫华.基于支持向量机的逆系统方法的研究[D].杭州:浙江大学,2006.
  • 3Gary G Yen and Pedro G Delima. Improving the Performance of Globblized Dual Heuristic Programming for Fault Control Through an Online Learning Supervisor[J].IEEE transactions on automa- tion science and engineering, Apr, 2005, 2 (2): 121 -131.
  • 4Ufuk D, Feza K, Fault Tolerant Control With Re--Coafigufing Sliding--Mode Schemes[J]. Turk J Elec Engin. 2005, 13 (1).
  • 5Weng Z, Patton R J, P Cui, Active fault tolerant control of a double inverted pendulum [J]. Systems and control engineering. 2007, 22 (1): 895-904.
  • 6Anjali P. Deshpande, Sachin C. Patwardhan, Shankar S. Narasimhan. Intelligent state estimation for fault tolerant nonlinear predictive control [J]. Journal of Process control. 2009, (19) : 187 - 204.
  • 7Tseng--Hsu Chien, Jason Sheng--Hong Tsai, Shu--Mei Guo, Jim --Shone Li. Low--order self--tuner for fault--tolerant control of a class of unknown nonlinear stochastic sampled--data systems[J]. Applied Mathematical Modelling. 2009, (33): 706-723.
  • 8Wang D , Zhou D H, Jin Y. Active fauk tolerant control of a class of nonlinear time--delay processes [J]. Chinese J. Chemical Engi neering ($1004-9541), 2004, 12 (1): 60-65.
  • 9Park J, Sandberg I W. Universal approximation using radial basis function networks[J]. Neural Computation, 1991, 3(2):246-257.
  • 10Wilson J R, Jeff S S. Research on gain scheduling[J]. Automatica,2000,36(10):1401-1425.

共引文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部