期刊文献+

XML数据流上Top-K关键字查询处理 被引量:8

Efficient Top-K Keyword Search on XML Streams
下载PDF
导出
摘要 利用关键字可以在模式未知的情况下对XML数据进行查询.在当前的XML数据流上的关键字查询处理中,打分函数往往不能都满足各种用户不同的需求.提出了一种基于skyline的XML数据流上的Top-K关键字查询.对于这种查询,不需要考虑影响结果与查询相关性的复杂因素,只需利用skyline挑选与查询最相关的结果.提出了两种XML数据流上的有效的基于skyline的Top-K关键查询处理算法,包括对单查询和多查询的处理算法.通过扩展实验对两种算法的有效性和可扩展性进行了验证.经过实验验证,所提出的查询处理算法的效率几乎不受关键字个数、查询结果数量、查询数量等参数的影响,运行时间和文档大小大致呈线性关系. Keywords are suitable for query XML streams without schema information. In current forms of keywords search on XML streams and rank functions do not always represent users' intensions. This paper addresses this problem in another aspect. In this paper, the skyline Top-K keyword queries, a novel kind of keyword queries on XML streams, are presented. For such queries, skyline is used to choose results on XML streams without considering the complicated factors influencing the relevance to queries. With skyline query processing techniques, two techniques, are presented to process skyline Top-K keyword single queries and multi-queries on XML streams efficiently. Extensive experiments are performed to verify the effectiveness and efficiency of these techniques presented in this paper. According to the experimental results, the algorithms are not sensitive to the parameters such as the number of keywords, the number of results, the number of queries, and the runtime is approximately linear to the size of document.
出处 《软件学报》 EI CSCD 北大核心 2012年第6期1561-1577,共17页 Journal of Software
基金 国家自然科学基金(61003046 61111130189) 国家重点基础研究发展计划(973)(2012CB316200) 高等学校博士学科点专项科研基金(20102302120054)
关键词 XML 数据流 关键字查询 TOP-K SKYLINE XML streams keyword search Top-K skyline
  • 相关文献

参考文献26

  • 1Hristidis V, Papakonstantinou Y, Balmin A. Keyword proximity search on XML graphs. In: Dayal U, et al.eds. Proc. of the 19th Int'l Conf. on Data Engineering. Bangalore: IEEE Computer Society, 2003. 367-378.
  • 2Barg M, Wong RK. Structural proximity searching for large collections of semi-structured data. In: Proc. of the 2001 ACM CIKM Int'l Conf. on Information and Knowledge Management. Atlanta: ACM Press, 2001. 175-182. [doi: 10.1145/502585.502615].
  • 3Cohen S, Mamou J, Kanza Y, Sagiv Y. XSEarch: A semantic search engine for XML. In: Freytag J, Lockemann P, et al., eds. Proc. of 29th Int'l Conf. on Very Large Data Bases. Berlin: Morgan Kaufmann Publishers, 2003.45-56.
  • 4Guo L, Shao F, Botev C, Shanmugasundaram J. XRANK: Ranked keyword search over XML documents. In: Halevy AY, Ives Z, Doan AH, eds. Proc. of the 2003 ACM SIGMOD Int'l Cotff. on Management of Data. San Diego: ACM Press, 2003. 16-27. [doi: 10.1145/872757:872762].
  • 5Borzsonyi, Kossmann D, Stocker K. The skyline operator. In: Proc. of the 17tb Int'l Conf. on Data Engineering. Heidelberg: IEEE Computer Society, 2001.421-430. [doi: 10.1109/ICDE.2001.914855].
  • 6Tatarinov I, Viglas S, Beyer K, Shanmugasundaram J, Shekita E, Zhang C. Storing and querying ordered XML using a relational database system. In: Franklin M J, Moon B, Ailamaki A, eds. Proe. of the 2002 ACM S1GMOD Int'l Conf. on Management of Data. Madison: ACM Press, 2002.204-215. [doi: 10.1145/564691.564715 ].
  • 7FrcdkinE.Triememory.C0mmunicationoftheAcM,1960,3(9):490一499.[doi:10.1145/367390-367400].
  • 8Aoe J. An efficient digital search algorithm by using a double-array structure. IEEE Trans. on Software Engineering, 1989,15(9): 1066-1077. [doi: 10.1109/32.31365].
  • 9Chomicki J, Godfrey P, Gryz J, Liang D. Skyline with presorting. In: Dayal U, Ramamritham K, Vijayaraman TM, eds. Proc. of the 19th Int'l Conf. on Data Engineering. Bangalore: IEEE Computer Society, 2003. 717-816. [doi: 10.1109/ICDE.2003.1260846].
  • 10Godfrey P, Shipley R, Gryz J. Maximal vector computation in large data sets. In: B6hm K, Jensen CS, et al.eds. Proc. of the 31st Int'l Conf. on Very Large Data Bases. Trondheim: ACM Press, 2005. 229-240.

同被引文献85

  • 1李婷,李昕,孟祥福.Rtop-k:基于结构松弛的XML关键字近似查询方法[J].计算机科学,2012,39(S3):185-190. 被引量:2
  • 2马建刚,黄涛,汪锦岭,徐罡,叶丹.面向大规模分布式计算发布订阅系统核心技术[J].软件学报,2006,17(1):134-147. 被引量:128
  • 3Mouratidis K,Yiu M L,Papadias D. Continuous nearest neighbor monitoring in road networks[A].{H}New York:ACM Press,2006.43-54.
  • 4Gao Y J,Zheng B H,Chen G C. Continuous visible nearest neighbor query processing in spatial databases[J].VLDBJ,2011,(03):371-396.
  • 5Li G H,Li Y H,Li J J. Continuous reverse k nearest neighbor monitoring on moving objects in road networks[J].{H}Information Systems,2010,(08):860-883.
  • 6Felipe I E,Hristidis V,Rishe N. Keyword search on spatial databases[A].Cancun:IEEE,2008.656-665.
  • 7Cong G,Jensen C S,Wu D. Efficient retrieval of the top-k most relevant spatial web objects[A].Lyon:ACM,2009.337-348.
  • 8Wu D,Yiu M L,Jensen C S. Efficient continuously moving top-k spatial keyword query processing[A].Hannover:IEEE,2011.541-551.
  • 9Cao X,Cong G,Jensen C S. Collective spatial keyword querying[A].Athens:ACM Press,2011.373-384.
  • 10Joao B,Rocha J,Kjetil N. Top-k spatial keyword queries on road networks[A].{H}Berlin:Springer-Verlag,2012.168-179.

引证文献8

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部