期刊文献+

基于多链拓展编码方案的量子遗传算法 被引量:3

Quantum genetic algorithm based on multi-chain coding scheme
下载PDF
导出
摘要 为了提高量子遗传算法的性能,提出了一种基于多链拓展编码方案的量子遗传算法。根据编码方案,将每个量子位分解为多个并列的基因,有效地拓展了搜索空间;结合编码方案提出量子更新策略,并引入了动态调整旋转角机制对个体进行更新,使用量子非门变异策略实现量子变异。仿真实验中,分析了使用不同变异概率[0,0.1,…,0.9,1]时对算法性能的影响,对比了分别使用普通量子遗传算法、双链编码方案、三链编码方案以及四链编码方案的量子遗传算法在优化函数极值问题时算法的性能。实验结果证明,通过增加基因链可以显著提高算法的性能,多链拓展编码方案可以提高量子遗传算法的性能,是有效的。 In order to improve the efficiency of the quantum genetic algorithm,this paper proposed a quantum genetic algorithm based on a expanded multi-chain coding scheme.The algorithm took qubit as chromosome.Each chromosome generated multiple and parallel gene chains which were mapping to multiple optimized solutions by separating qubit into multiple and parallel genes.The expanded genes chains expanded the searching space effectively and increased evolutionary rate for quantum genetic algorithm.It introduced the dynamic adjusting rotation angle mechanism to quantum rotation gate to guide individual evolution and used quantum not-gate to prevent algorithm occurring premature convergence.The method further improved searching efficiency.In the simulation experiment,analysed the influence for the algorithm with different variation probability([0,0.1,…,0.9,1])and used different code schemes to optimize extremal function.The simulation experiment result shows that it can obviously improve the efficiency of quantum genetic algorithm by adding gene chain,and the quantum genetic algorithm based on a expanded multi-chain coding scheme is efficient.
机构地区 解放军理工大学
出处 《计算机应用研究》 CSCD 北大核心 2012年第6期2061-2064,共4页 Application Research of Computers
基金 国家自然科学基金资助项目(70791137)
关键词 多链拓展编码 量子遗传算法 基因链 量子旋转门 量子非门 expansion of multi-chain coding quantum genetic algorithm gene chain quantum rotation gate quantum not-gate
  • 相关文献

参考文献3

二级参考文献17

  • 1李士勇,李盼池.基于实数编码和目标函数梯度的量子遗传算法[J].哈尔滨工业大学学报,2006,38(8):1216-1218. 被引量:60
  • 2SHOR P W.Algorithms for quantum computation:discrete logarithms and factoring[C] //Proc of the 35th Annual Symposium on Foundations of Computer Science.Washingtom DC:IEEE Computer Society,1994:124-134.
  • 3GROVER L K.A fast quantum mechanical algorithm for database search[C] //Proc of the 28th Annual ACM Symposium on the Theory of Computing.New York:ACM Press,1996:212-219.
  • 4OGRYZKO V V.A quantum-theoretical approach to the phenomenon of directed mutations in bacteria (hypothesis)[J].Biosystems,1997,43(2):83-95.
  • 5HOGG T.A framework for structured quantum search[J].Physica D,1998,120(1-2):102-116.
  • 6LONG Gui-lu,LI Yan-song,LIN Wei,et al.Phase matching in quantum searching[J].Physics Letters A,1999,262(1):27-34.
  • 7NARAYANAN A,MOORE M.Quantum-inspired genetic algorithm[C] //Proc of IEEE International Conference on Evolutionary Computation.Piscataway:IEEE Press,1996:61-66.
  • 8HAN Kuk-hyun,PARK Kui-hong,LEE Chi-lee,et al.Parallel quantum-inspired genetic algorithm for combinatorial optimization problems[C] //Proc of IEEE Congress on Evolutionary Computation.Piscata-way:IEEE Press,2001:1442-1429.
  • 9YANG Jun-an,LI Bin,ZHUANG Zhen-quan.Multi-universe parallel quantum genetic algorithm its application to blind-source separation[C] //Proc of IEEE International Conference on Neural Networks & Signal Processing.2003:393-398.
  • 10WANG Ling,TANG Fang,WU Hao.Hybrid genetic algorithm based on quantum computing for numerical optimization and parameter estimation[J].Applied Mathematics and Computation,2005,171(2):1141-1156.

共引文献69

同被引文献29

  • 1张葛祥,金炜东,胡来招.基于量子遗传算法的特征选择算法[J].控制理论与应用,2005,22(5):810-813. 被引量:12
  • 2李士勇,李盼池.基于实数编码和目标函数梯度的量子遗传算法[J].哈尔滨工业大学学报,2006,38(8):1216-1218. 被引量:60
  • 3NARAYANAN A, MOORE M. Quantum-inspired genetic algorithms[C]//Proceedings of IEEE International Conferen- ce on Evolutionary Computation, Nagoya, Japan, 1996:61- 66.
  • 4HAN K H, KIM J H. Genetic quantum algorithm and its application to combinational optimization problem[C]//Pro- ceedings of the International Congress on Evolutionary Computation. IEEE Press, 2000:1354-1360.
  • 5LI Pan-chi, LI Shi-yong. Quantum-inspired evolutionary algorithm for continous spaces optimization based on Bloch coordinates of qubits [J]. Neurocomputing,2008,72 (1-3):581-591.
  • 6Narayanan A, Moore M. Quantum-inspired genetic algorithms[C]//Proceeding of IEEE International Conference on Evolutionary Computation, Nagoya, Japan, 1996:61-66.
  • 7Pat A, Hota A R, Singh A. Quantum-inspired differential evolution on Bloch coordinates of qubits[M]//Advances in Computing, Communication and Control. Springer Berlin Heidelberg, 2011:18-24.
  • 8Lewandowski M, Ranganathan N, Morrison M. Behavioral model of integrated qubit gates for quantum reversible logic design[C]//VLSI (ISVLSI), 2013 IEEE Computer Society Annual Symposium on, 2013:194-199.
  • 9Murch K W, Weber S J, Macklin C, et al. Observing single quantum trajectories of a superconducting quantum bit[J]. Nature, 2013, 502(7470):211-214.
  • 10Ostermann L, Ritsch H, Genes C. Protected state enhanced quantum metrology with interacting two-level ensembles[J]. Physical Review Letters, 2013, 111(12):123601.

引证文献3

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部